Index growth not imputable to topology
HTML articles powered by AMS MathViewer
- by Alessandro Carlotto, Mario B. Schulz and David Wiygul;
- Proc. Amer. Math. Soc. 153 (2025), 1787-1801
- DOI: https://doi.org/10.1090/proc/17151
- Published electronically: February 10, 2025
- HTML | PDF | Request permission
Abstract:
We employ partitioning methods, in the spirit of Montiel–Ros but here recast for general actions of compact Lie groups, to prove effective lower bounds on the Morse index of certain families of closed minimal hypersurfaces in the round four-dimensional sphere, and of free boundary minimal hypersurfaces in the Euclidean four-dimensional ball. Our analysis reveals, in particular, phenomena of linear index growth for sequences of minimal hypersurfaces of fixed topological type, in strong contrast to the three-dimensional scenario.References
- Hilário Alencar, Minimal hypersurfaces of $\textbf {R}^{2m}$ invariant by $\textrm {SO}(m)\times \textrm {SO}(m)$, Trans. Amer. Math. Soc. 337 (1993), no. 1, 129–141. MR 1091229, DOI 10.1090/S0002-9947-1993-1091229-1
- Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp, Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. Partial Differential Equations 57 (2018), no. 1, Paper No. 22, 39. MR 3740402, DOI 10.1007/s00526-017-1281-y
- Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp, Comparing the Morse index and the first Betti number of minimal hypersurfaces, J. Differential Geom. 108 (2018), no. 3, 379–410. MR 3770846, DOI 10.4310/jdg/1519959621
- Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp, Index estimates for free boundary minimal hypersurfaces, Math. Ann. 370 (2018), no. 3-4, 1063–1078. MR 3770163, DOI 10.1007/s00208-017-1549-8
- Alessandro Carlotto and Mario B. Schulz, Minimal hypertori in the four-dimensional sphere, Ars Inven. Anal. (2023), Paper No. 8, 33. MR 4645955
- A. Carlotto, M. B. Schulz, and D. Wiygul, Spectral estimates for free boundary minimal surfaces via Montiel–Ros partitioning methods, Anal. PDE (to appear), arXiv:2301.03055, 2023.
- Elie Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335–367 (French). MR 169, DOI 10.1007/BF01580289
- Jaigyoung Choe, Index, vision number and stability of complete minimal surfaces, Arch. Rational Mech. Anal. 109 (1990), no. 3, 195–212. MR 1025170, DOI 10.1007/BF00375088
- Hyeong In Choi and Ai Nung Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom. 18 (1983), no. 3, 559–562. MR 723817
- Santiago Cordero-Misteli and Giada Franz, Estimating the Morse index of free boundary minimal hypersurfaces through covering arguments, J. Reine Angew. Math. 807 (2024), 187–220. MR 4698495, DOI 10.1515/crelle-2023-0087
- Norio Ejiri and Mario Micallef, Comparison between second variation of area and second variation of energy of a minimal surface, Adv. Calc. Var. 1 (2008), no. 3, 223–239. MR 2458236, DOI 10.1515/ACV.2008.009
- Brian Freidin, Mamikon Gulian, and Peter McGrath, Free boundary minimal surfaces in the unit ball with low cohomogeneity, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1671–1683. MR 3601558, DOI 10.1090/proc/13424
- Alexander Grigor′yan, Yuri Netrusov, and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 147–217. MR 2195408, DOI 10.4310/SDG.2004.v9.n1.a5
- Wu-Yi Hsiang, Minimal cones and the spherical Bernstein problem. I, Ann. of Math. (2) 118 (1983), no. 1, 61–73. MR 707161, DOI 10.2307/2006954
- Wu-yi Hsiang and H. Blaine Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1–38. MR 298593
- Nikolaos Kapouleas and David Wiygul, The index and nullity of the Lawson surfaces $\xi _{g,1}$, Camb. J. Math. 8 (2020), no. 2, 363–405. MR 4091028, DOI 10.4310/CJM.2020.v8.n2.a3
- Vanderson Lima, Bounds for the Morse index of free boundary minimal surfaces, Asian J. Math. 26 (2022), no. 2, 227–252. MR 4557080, DOI 10.4310/ajm.2022.v26.n2.a3
- Yevgeny Liokumovich, Fernando C. Marques, and André Neves, Weyl law for the volume spectrum, Ann. of Math. (2) 187 (2018), no. 3, 933–961. MR 3779961, DOI 10.4007/annals.2018.187.3.7
- Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147–174. MR 1178529, DOI 10.1007/BFb0083639
- André Neves, New applications of min-max theory, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 939–957. MR 3728646
- Oscar Perdomo, Low index minimal hypersurfaces of spheres, Asian J. Math. 5 (2001), no. 4, 741–749. MR 1913819, DOI 10.4310/AJM.2001.v5.n4.a8
- Pam Sargent, Index bounds for free boundary minimal surfaces of convex bodies, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2467–2480. MR 3626504, DOI 10.1090/proc/13442
- Alessandro Savo, Index bounds for minimal hypersurfaces of the sphere, Indiana Univ. Math. J. 59 (2010), no. 3, 823–837. MR 2779062, DOI 10.1512/iumj.2010.59.4013
- Ben Sharp, Compactness of minimal hypersurfaces with bounded index, J. Differential Geom. 106 (2017), no. 2, 317–339. MR 3662994, DOI 10.4310/jdg/1497405628
- Graham Smith, Ari Stern, Hung Tran, and Detang Zhou, On the Morse index of higher-dimensional free boundary minimal catenoids, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 208, 44. MR 4305430, DOI 10.1007/s00526-021-02049-8
- Bruce Solomon, The harmonic analysis of cubic isoparametric minimal hypersurfaces. I. Dimensions $3$ and $6$, Amer. J. Math. 112 (1990), no. 2, 157–203. MR 1047297, DOI 10.2307/2374713
- Antoine Song, Morse index, Betti numbers, and singular set of bounded area minimal hypersurfaces, Duke Math. J. 172 (2023), no. 11, 2073–2147. MR 4627248, DOI 10.1215/00127094-2023-0012
- Francisco Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), no. 4, 989–992. MR 1007516, DOI 10.1090/S0002-9939-1990-1007516-1
- Zhichao Wang, Existence of infinitely many free boundary minimal hypersurfaces, J. Differential Geom. 126 (2024), no. 1, 363–399. MR 4704552, DOI 10.4310/jdg/1707767341
- Xin Zhou, On the multiplicity one conjecture in min-max theory, Ann. of Math. (2) 192 (2020), no. 3, 767–820. MR 4172621, DOI 10.4007/annals.2020.192.3.3
Bibliographic Information
- Alessandro Carlotto
- Affiliation: Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38123 Povo di Trento, Italy
- MR Author ID: 925162
- Email: alessandro.carlotto@unitn.it
- Mario B. Schulz
- Affiliation: Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38123 Povo di Trento, Italy
- MR Author ID: 1345269
- ORCID: 0000-0002-1010-1310
- Email: mario.schulz@unitn.it
- David Wiygul
- Affiliation: Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38123 Povo di Trento, Italy
- MR Author ID: 1261271
- ORCID: 0000-0001-8862-2469
- Email: davidjames.wiygul@unitn.it
- Received by editor(s): July 19, 2024
- Received by editor(s) in revised form: October 28, 2024
- Published electronically: February 10, 2025
- Additional Notes: This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947923). The research of the second author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics–Geometry–Structure, and the Collaborative Research Centre CRC 1442, Geometry: Deformations and Rigidity
- Communicated by: Jiaping Wang
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1787-1801
- MSC (2020): Primary 53A10
- DOI: https://doi.org/10.1090/proc/17151