Sobolev regularity of the Bergman and Szegö projections in terms of $\overline {\partial }\oplus \overline {\partial }^{*}$ and $\overline {\partial }_{b}\oplus \overline {\partial }_{b}^{*}$
HTML articles powered by AMS MathViewer
- by Emil J. Straube;
- Proc. Amer. Math. Soc. 153 (2025), 1669-1673
- DOI: https://doi.org/10.1090/proc/17174
- Published electronically: February 13, 2025
- HTML | PDF | Request permission
Abstract:
Let $\Omega$ be a smooth bounded pseudoconvex domain in $\mathbb {C}^{n}$. It is shown that for $0\leq q\leq n$, $s\geq 0$, the embedding $j_{q}: dom(\overline {\partial })\cap dom(\overline {\partial }^{*}) \hookrightarrow L^{2}_{(0,q)}(\Omega )$ is continuous in $W^{s}(\Omega )$-norms if and only if the Bergman projection $P_{q}$ is (see below for the modification needed for $j_{0}$). The analogous result for the operators on the boundary is also proved (for $n\geq 3$). In particular, $j_{1}$ is always regular in Sobolev norms in $\mathbb {C}^{2}$, notwithstanding the fact that $N_{1}$ need not be.References
- David E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), no. 1-2, 1–10. MR 1149863, DOI 10.1007/BF02392975
- Séverine Biard and Emil J. Straube, $L^2$-Sobolev theory for the complex Green operator, Internat. J. Math. 28 (2017), no. 9, 1740006, 31. MR 3690415, DOI 10.1142/S0129167X17400067
- Harold P. Boas and Emil J. Straube, Equivalence of regularity for the Bergman projection and the $\overline \partial$-Neumann operator, Manuscripta Math. 67 (1990), no. 1, 25–33. MR 1037994, DOI 10.1007/BF02568420
- Harold P. Boas and Emil J. Straube, Sobolev estimates for the complex Green operator on a class of weakly pseudoconvex boundaries, Comm. Partial Differential Equations 16 (1991), no. 10, 1573–1582. MR 1133741, DOI 10.1080/03605309108820813
- Albert Boggess, CR-manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, 1991.
- So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. MR 1800297, DOI 10.1090/amsip/019
- Michael Christ, Global $C^\infty$ irregularity of the $\overline \partial$-Neumann problem for worm domains, J. Amer. Math. Soc. 9 (1996), no. 4, 1171–1185. MR 1370592, DOI 10.1090/S0894-0347-96-00213-5
- Phillip S. Harrington, Marco M. Peloso, and Andrew S. Raich, Regularity equivalence of the Szegö projection and the complex Green operator, Proc. Amer. Math. Soc. 143 (2015), no. 1, 353–367. MR 3272760, DOI 10.1090/S0002-9939-2014-12393-8
- Phillip S. Harrington and Andrew Raich, Regularity results for $\overline \partial _b$ on CR-manifolds of hypersurface type, Comm. Partial Differential Equations 36 (2011), no. 1, 134–161. MR 2763350, DOI 10.1080/03605302.2010.498855
- J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, DOI 10.1007/BF02395058
- J. J. Kohn, Estimates for $\bar \partial _b$ on pseudoconvex CR manifolds, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 207–217. MR 812292, DOI 10.1090/pspum/043/812292
- Joseph J. Kohn and Andreea C. Nicoara, The $\overline \partial _b$ equation on weakly pseudo-convex CR manifolds of dimension 3, J. Funct. Anal. 230 (2006), no. 2, 251–272. MR 2186214, DOI 10.1016/j.jfa.2005.09.001
- J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492. MR 181815, DOI 10.1002/cpa.3160180305
- Andreea C. Nicoara, Global regularity for $\overline \partial _b$ on weakly pseudoconvex CR manifolds, Adv. Math. 199 (2006), no. 2, 356–447. MR 2189215, DOI 10.1016/j.aim.2004.12.006
- Andrew S. Raich, private communication.
- Emil J. Straube, Lectures on the $\scr L^2$-Sobolev theory of the $\overline {\partial }$-Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. MR 2603659, DOI 10.4171/076
Bibliographic Information
- Emil J. Straube
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 68145
- Email: e-straube@tamu.edu
- Received by editor(s): October 13, 2024
- Published electronically: February 13, 2025
- Additional Notes: This research was supported in part by NSF grant DMS–2247175
- Communicated by: Filippo Bracci
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1669-1673
- MSC (2020): Primary 32W05, 32W10
- DOI: https://doi.org/10.1090/proc/17174