Uniqueness in weighted $l^p$ spaces for the Schrödinger equation on infinite graphs
HTML articles powered by AMS MathViewer
- by Giulia Meglioli and Fabio Punzo;
- Proc. Amer. Math. Soc. 153 (2025), 1519-1537
- DOI: https://doi.org/10.1090/proc/17178
- Published electronically: February 10, 2025
- HTML | PDF | Request permission
Abstract:
We investigate uniqueness of solutions to Schrödinger-type elliptic equations posed on infinite graphs. Solutions are assumed to belong to suitable weighted $\ell ^p$ spaces where $p\geq 1$ and the weight is related to both the potential and $p$.References
- Martin Barlow, Thierry Coulhon, and Alexander Grigor’yan, Manifolds and graphs with slow heat kernel decay, Invent. Math. 144 (2001), no. 3, 609–649. MR 1833895, DOI 10.1007/s002220100139
- Stefano Biagi and Fabio Punzo, A Liouville-type theorem for elliptic equations with singular coefficients in bounded domains, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 53, 22. MR 4525734, DOI 10.1007/s00526-022-02389-z
- Davide Bianchi, Alberto G. Setti, and Radosław K. Wojciechowski, The generalized porous medium equation on graphs: existence and uniqueness of solutions with $\ell ^1$ data, Calc. Var. Partial Differential Equations 61 (2022), no. 5, Paper No. 171, 42. MR 4445511, DOI 10.1007/s00526-022-02249-w
- Thierry Coulhon, Alexander Grigor′yan, and Fabio Zucca, The discrete integral maximum principle and its applications, Tohoku Math. J. (2) 57 (2005), no. 4, 559–587. MR 2203547
- N. Deo, Graph theory with applications to engineering and computer science, Dover Publications, New York, 2016.
- Matthias Erbar and Jan Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1355–1374. MR 3117845, DOI 10.3934/dcds.2014.34.1355
- A. Grigor’yan, Bounded solutions of the Schrödinger equation on noncompact Riemannian manifolds, J. Soviet Math. 51 (1990), 2340–2349.
- Alexander Grigor′yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. MR 1659871, DOI 10.1090/S0273-0979-99-00776-4
- Alexander Grigor’yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009. MR 2569498, DOI 10.1090/amsip/047
- Alexander Grigor′yan, Introduction to analysis on graphs, University Lecture Series, vol. 71, American Mathematical Society, Providence, RI, 2018. MR 3822363, DOI 10.1090/ulect/071
- Alexander Grigor’yan, Yong Lin, and Yunyan Yang, Kazdan-Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 92, 13. MR 3523107, DOI 10.1007/s00526-016-1042-3
- Alexander Grigor’yan, Yong Lin, and Yunyan Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), no. 9, 4924–4943. MR 3542963, DOI 10.1016/j.jde.2016.07.011
- Qingsong Gu, Xueping Huang, and Yuhua Sun, Semi-linear elliptic inequalities on weighted graphs, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 42, 14. MR 4525723, DOI 10.1007/s00526-022-02384-4
- Bobo Hua and Jürgen Jost, $L^q$ harmonic functions on graphs, Israel J. Math. 202 (2014), no. 1, 475–490. MR 3265330, DOI 10.1007/s11856-014-1089-9
- Bobo Hua and Yong Lin, Stochastic completeness for graphs with curvature dimension conditions, Adv. Math. 306 (2017), 279–302. MR 3581303, DOI 10.1016/j.aim.2016.10.022
- Bobo Hua and Matthias Keller, Harmonic functions of general graph Laplacians, Calc. Var. Partial Differential Equations 51 (2014), no. 1-2, 343–362. MR 3247392, DOI 10.1007/s00526-013-0677-6
- Bobo Hua, Matthias Keller, Daniel Lenz, and Marcel Schmidt, On $L^p$ Liouville theorems for Dirichlet forms, Dirichlet forms and related topics, Springer Proc. Math. Stat., vol. 394, Springer, Singapore, [2022] ©2022, pp. 201–221. MR 4508847, DOI 10.1007/978-981-19-4672-1_{1}2
- Bobo Hua and Delio Mugnolo, Time regularity and long-time behavior of parabolic $p$-Laplace equations on infinite graphs, J. Differential Equations 259 (2015), no. 11, 6162–6190. MR 3397320, DOI 10.1016/j.jde.2015.07.018
- Bobo Hua and Lili Wang, Dirichlet $p$-Laplacian eigenvalues and Cheeger constants on symmetric graphs, Adv. Math. 364 (2020), 106997, 34. MR 4058211, DOI 10.1016/j.aim.2020.106997
- Xueping Huang, On uniqueness class for a heat equation on graphs, J. Math. Anal. Appl. 393 (2012), no. 2, 377–388. MR 2921681, DOI 10.1016/j.jmaa.2012.04.026
- Xueping Huang, Matthias Keller, and Marcel Schmidt, On the uniqueness class, stochastic completeness and volume growth for graphs, Trans. Amer. Math. Soc. 373 (2020), no. 12, 8861–8884. MR 4177278, DOI 10.1090/tran/8211
- Matthias Keller and Michael Schwarz, The Kazdan-Warner equation on canonically compactifiable graphs, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 70, 18. MR 3776360, DOI 10.1007/s00526-018-1329-7
- Matthias Keller, Daniel Lenz, and Radosław K. Wojciechowski, Graphs and discrete Dirichlet spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 358, Springer, Cham, [2021] ©2021. MR 4383783, DOI 10.1007/978-3-030-81459-5
- Daniel Lenz and Alexander Teplyaev, Expansion in generalized eigenfunctions for Laplacians on graphs and metric measure spaces, Trans. Amer. Math. Soc. 368 (2016), no. 7, 4933–4956. MR 3456166, DOI 10.1090/tran/6639
- Annick Lesne, Complex networks: from graph theory to biology, Lett. Math. Phys. 78 (2006), no. 3, 235–262. MR 2284172, DOI 10.1007/s11005-006-0123-1
- Yong Lin and Yiting Wu, The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Paper No. 102, 22. MR 3688855, DOI 10.1007/s00526-017-1204-y
- Shuang Liu and Yunyan Yang, Multiple solutions of Kazdan-Warner equation on graphs in the negative case, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 164, 15. MR 4149340, DOI 10.1007/s00526-020-01840-3
- Yong Lin and Yunyan Yang, A heat flow for the mean field equation on a finite graph, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 206, 15. MR 4305428, DOI 10.1007/s00526-021-02086-3
- E. Lieberman, C. Hauert, and M. A. Nowak, Evolutionary dynamics on graphs, Nature 433 (2005), 312–316.
- Jun Masamune, A Liouville property and its application to the Laplacian of an infinite graph, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 103–115. MR 1500141, DOI 10.1090/conm/484/09468
- Giulia Meglioli and Alberto Roncoroni, Uniqueness in weighted Lebesgue spaces for an elliptic equation with drift on manifolds, J. Geom. Anal. 33 (2023), no. 10, Paper No. 320, 29. MR 4619580, DOI 10.1007/s12220-023-01378-8
- Delio Mugnolo, Parabolic theory of the discrete $p$-Laplace operator, Nonlinear Anal. 87 (2013), 33–60. MR 3057035, DOI 10.1016/j.na.2013.04.002
- Delio Mugnolo, Semigroup methods for evolution equations on networks, Understanding Complex Systems, Springer, Cham, 2014. MR 3243602, DOI 10.1007/978-3-319-04621-1
- Giulia Meglioli and Fabio Punzo, Uniqueness for fractional parabolic and elliptic equations with drift, Commun. Pure Appl. Anal. 22 (2023), no. 6, 1962–1981. MR 4599397, DOI 10.3934/cpaa.2023054
- Camilla Nobili and Fabio Punzo, Uniqueness for degenerate parabolic equations in weighted $L^1$ spaces, J. Evol. Equ. 22 (2022), no. 2, Paper No. 50, 30. MR 4430296, DOI 10.1007/s00028-022-00805-7
- Andrea Pinamonti and Giorgio Stefani, Existence and uniqueness theorems for some semi-linear equations on locally finite graphs, Proc. Amer. Math. Soc. 150 (2022), no. 11, 4757–4770. MR 4489310, DOI 10.1090/proc/16046
- Fabio Punzo, Uniqueness for the heat equation in Riemannian manifolds, J. Math. Anal. Appl. 424 (2015), no. 1, 402–422. MR 3286568, DOI 10.1016/j.jmaa.2014.11.028
- Fabio Punzo, Integral conditions for uniqueness of solutions to degenerate parabolic equations, J. Differential Equations 267 (2019), no. 11, 6555–6573. MR 4001064, DOI 10.1016/j.jde.2019.07.003
- Fabio Punzo and Enrico Valdinoci, Uniqueness in weighted Lebesgue spaces for a class of fractional parabolic and elliptic equations, J. Differential Equations 258 (2015), no. 2, 555–587. MR 3274769, DOI 10.1016/j.jde.2014.09.023
- Yiting Wu, Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 133, 16. MR 4268013, DOI 10.1007/s13398-021-01075-7
Bibliographic Information
- Giulia Meglioli
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
- MR Author ID: 1383914
- ORCID: 0000-0001-8006-3658
- Email: gmeglioli@math.uni-bielefeld.de
- Fabio Punzo
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- MR Author ID: 851995
- Email: fabio.punzo@polimi.it
- Received by editor(s): December 19, 2022
- Received by editor(s) in revised form: January 4, 2023, January 19, 2023, September 21, 2023, January 29, 2024, and March 28, 2024
- Published electronically: February 10, 2025
- Communicated by: Ryan Hynd
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1519-1537
- MSC (2020): Primary 35A02, 35J10, 35J15
- DOI: https://doi.org/10.1090/proc/17178