A harmonic level set proof of a positive mass theorem
HTML articles powered by AMS MathViewer
- by Rondinelle Marcolino Batista and Levi Lopes de Lima;
- Proc. Amer. Math. Soc. 153 (2025), 1761-1770
- DOI: https://doi.org/10.1090/proc/17192
- Published electronically: February 12, 2025
- HTML | PDF | Request permission
Abstract:
We provide a harmonic level set proof (along the lines of the argument by Bray et al [J. Geom. Anal. 32 (2022), p. 29]) of the positive mass theorem for asymptotically flat $3$-manifolds with a non-compact boundary first established by Almaraz-Barbosa-de Lima [Comm. Anal. Geom. 24 (2016), pp. 673–715].References
- Virginia Agostiniani, Lorenzo Mazzieri, and Francesca Oronzio, A Green’s function proof of the positive mass theorem, Comm. Math. Phys. 405 (2024), no. 2, Paper No. 54, 23. MR 4707045, DOI 10.1007/s00220-024-04941-8
- Sérgio Almaraz, Ezequiel Barbosa, and Levi Lopes de Lima, A positive mass theorem for asymptotically flat manifolds with a non-compact boundary, Comm. Anal. Geom. 24 (2016), no. 4, 673–715. MR 3570413, DOI 10.4310/CAG.2016.v24.n4.a1
- Sérgio Almaraz, Levi Lopes de Lima, and Luciano Mari, Spacetime positive mass theorems for initial data sets with non-compact boundary, Int. Math. Res. Not. IMRN 4 (2021), 2783–2841. MR 4218338, DOI 10.1093/imrn/rnaa226
- R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity, Gravitation: An introduction to current research, Wiley, New York-London, 1962, pp. 227–265. MR 143629
- Hubert Bray, Sven Hirsch, Demetre Kazaras, Marcus Khuri, and Yiyue Zhang, Spacetime harmonic functions and applications to mass, Perspectives in scalar curvature. Vol. 2, World Sci. Publ., Hackensack, NJ, [2023] ©2023, pp. 593–639. MR 4577926
- Hubert L. Bray, Demetre P. Kazaras, Marcus A. Khuri, and Daniel L. Stern, Harmonic functions and the mass of 3-dimensional asymptotically flat Riemannian manifolds, J. Geom. Anal. 32 (2022), no. 6, Paper No. 184, 29. MR 4411747, DOI 10.1007/s12220-022-00924-0
- Xiaoxiang Chai, Positive mass theorem and free boundary minimal surfaces, arXiv:1811.06254, 2018.
- Demetrios Christodoulou, Mathematical problems of general relativity. I, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2391586, DOI 10.4171/005
- Levi Lopes de Lima, Frederico Girão, and Amilcar Montalbán, The mass in terms of Einstein and Newton, Classical Quantum Gravity 36 (2019), no. 7, 075017, 11. MR 3942085, DOI 10.1088/1361-6382/ab090a
- Levi Lopes de Lima, Conserved quantities in general relativity: the case of initial datasets with a non-compact boundary, Perspectives in scalar curvature. Vol. 2, World Sci. Publ., Hackensack, NJ, [2023] ©2023, pp. 489–518. MR 4577924
- Levi Lopes de Lima and Frederico Girão, The ADM mass of asymptotically flat hypersurfaces, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6247–6266. MR 3356936, DOI 10.1090/S0002-9947-2014-05902-3
- Michael Eichmair and Thomas Koerber, Doubling of asymptotically flat half-spaces and the Riemannian Penrose inequality, Comm. Math. Phys. 400 (2023), no. 3, 1823–1860. MR 4595610, DOI 10.1007/s00220-023-04635-7
- Misha Gromov, Dirac and Plateau billiards in domains with corners, Cent. Eur. J. Math. 12 (2014), no. 8, 1109–1156. MR 3201312, DOI 10.2478/s11533-013-0399-1
- Daniel Harlow and Jie-qiang Wu, Covariant phase space with boundaries, J. High Energy Phys. 10 (2020), 146, 51. MR 4203959, DOI 10.1007/jhep10(2020)146
- Marc Herzlich, Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds, Ann. Henri Poincaré 17 (2016), no. 12, 3605–3617. MR 3568027, DOI 10.1007/s00023-016-0494-5
- Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR 1916951
- Thomas Koerber, The Riemannian Penrose inequality for asymptotically flat manifolds with non-compact boundary, J. Differential Geom. 124 (2023), no. 2, 317–379. MR 4602727, DOI 10.4310/jdg/1686931603
- Mau-Kwong and George Lam, The graph cases of the Riemannian positive mass and Penrose inequalities in all dimensions, arXiv:1010.4256 (2011).
- Chao Li, A polyhedron comparison theorem for 3-manifolds with positive scalar curvature, Invent. Math. 219 (2020), no. 1, 1–37. MR 4050100, DOI 10.1007/s00222-019-00895-0
- Pengzi Miao, Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys. 6 (2002), no. 6, 1163–1182 (2003). MR 1982695, DOI 10.4310/ATMP.2002.v6.n6.a4
- B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011), no. 5, 052504, 14. MR 2839077, DOI 10.1063/1.3579137
- Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76. MR 526976, DOI 10.1007/BF01940959
- Daniel L. Stern, Scalar curvature and harmonic maps to $S^1$, J. Differential Geom. 122 (2022), no. 2, 259–269. MR 4516941, DOI 10.4310/jdg/1669998185
- Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), no. 3, 381–402. MR 626707, DOI 10.1007/BF01208277
Bibliographic Information
- Rondinelle Marcolino Batista
- Affiliation: Universidade Federal do Piauí (UFPI), Departamento de Matemática, Campus Petrônio Portella, 64049-550, Teresina, PI, Brazil
- Address at time of publication: Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794, USA
- MR Author ID: 1059014
- ORCID: 0000-0002-2533-4045
- Email: rmarcolino@ufpi.edu.br
- Levi Lopes de Lima
- Affiliation: Universidade Federal do Ceará (UFC), Departamento de Matemática, Campus do Pici, Av. Humberto Monte, s/n, Bloco 914, 60455-760, Fortaleza, CE, Brazil
- MR Author ID: 604589
- ORCID: 0000-0001-8046-3571
- Email: levi@mat.ufc.br
- Received by editor(s): March 24, 2024
- Published electronically: February 12, 2025
- Additional Notes: The first author was supported in part by CNPq/Brazil Universal Grant 422900/2021-4.
The second author was supported in part by FUNCAP/CNPq/PRONEX 00068.01.00/15. - Communicated by: Jiaping Wang
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1761-1770
- MSC (2020): Primary 53C21; Secondary 53C80
- DOI: https://doi.org/10.1090/proc/17192