Some examples of tame dynamical systems answering questions of Glasner and Megrelishvili
HTML articles powered by AMS MathViewer
- by Alessandro Codenotti;
- Proc. Amer. Math. Soc. 153 (2025), 2433-2449
- DOI: https://doi.org/10.1090/proc/16726
- Published electronically: March 24, 2025
- HTML | PDF | Request permission
Abstract:
Glasner and Megrelishvili [Trans. Amer. Math. Soc. 375 (2022), pp. 4513–4548] proved that every continuous action of a topological group $G$ on a dendrite $X$ is tame. We produce two examples of an action on a dendrite which is not $\mathrm {tame}_1$, answering a question they raised. We then show that actions on dendrites have $\beta$-rank at most $2$ and produce examples of tame metric dynamical systems of $\beta$-rank $\alpha$ for any $\alpha <\omega _1$, answering another question of Glasner and Megrelishvili.References
- Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049
- J. Bourgain, Compact sets of first Baire class, Bull. Soc. Math. Belg. 29 (1977), no. 2, 135–143. MR 470931
- Włodzimierz J. Charatonik and Anne Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), no. 3, 215–238. MR 1259506, DOI 10.1016/0166-8641(94)90038-8
- Bruno Duchesne and Nicolas Monod, Group actions on dendrites and curves, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 5, 2277–2309 (English, with English and French summaries). MR 3893770, DOI 10.5802/aif.3209
- Bruno Duchesne and Nicolas Monod, Structural properties of dendrite groups, Trans. Amer. Math. Soc. 371 (2019), no. 3, 1925–1949. MR 3894039, DOI 10.1090/tran/7347
- Robert Ellis, The enveloping semigroup of projective flows, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 635–660. MR 1257027, DOI 10.1017/S0143385700007598
- E. Glasner, On tame dynamical systems, Colloq. Math. 105 (2006), no. 2, 283–295. MR 2237913, DOI 10.4064/cm105-2-9
- Eli Glasner, The structure of tame minimal dynamical systems for general groups, Invent. Math. 211 (2018), no. 1, 213–244. MR 3742758, DOI 10.1007/s00222-017-0747-z
- E. Glasner and M. Megrelishvili, Hereditarily non-sensitive dynamical systems and linear representations, Colloq. Math. 104 (2006), no. 2, 223–283. MR 2197078, DOI 10.4064/cm104-2-5
- Eli Glasner and Michael Megrelishvili, Circularly ordered dynamical systems, Monatsh. Math. 185 (2018), no. 3, 415–441. MR 3767727, DOI 10.1007/s00605-017-1134-y
- Eli Glasner and Michael Megrelishvili, More on tame dynamical systems, Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Lecture Notes in Math., vol. 2213, Springer, Cham, 2018, pp. 351–392. MR 3821724
- Eli Glasner and Michael Megrelishvili, Group actions on treelike compact spaces, Sci. China Math. 62 (2019), no. 12, 2447–2462. MR 4033154, DOI 10.1007/s11425-018-9488-9
- Eli Glasner and Michael Megrelishvili, Todorc̆ević’ trichotomy and a hierarchy in the class of tame dynamical systems, Trans. Amer. Math. Soc. 375 (2022), no. 7, 4513–4548. MR 4439484, DOI 10.1090/tran/8522
- Eli Glasner, Michael Megrelishvili, and Vladimir V. Uspenskij, On metrizable enveloping semigroups, Israel J. Math. 164 (2008), 317–332. MR 2391152, DOI 10.1007/s11856-008-0032-3
- Wen Huang, Tame systems and scrambled pairs under an abelian group action, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1549–1567. MR 2266373, DOI 10.1017/S0143385706000198
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- A. S. Kechris and A. Louveau, A classification of Baire class $1$ functions, Trans. Amer. Math. Soc. 318 (1990), no. 1, 209–236. MR 946424, DOI 10.1090/S0002-9947-1990-0946424-3
- David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, DOI 10.1007/s00208-007-0097-z
- Angela Köhler, Enveloping semigroups for flows, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 179–191. MR 1660377
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Stevo Todorčević, Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 (1999), no. 4, 1179–1212. MR 1685782, DOI 10.1090/S0894-0347-99-00312-4
Bibliographic Information
- Alessandro Codenotti
- Affiliation: Dipartimento di matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
- Email: alessandro.codenotti@unibo.it
- Received by editor(s): August 4, 2023
- Received by editor(s) in revised form: August 10, 2023, November 2, 2023, November 7, 2023, and November 8, 2023
- Published electronically: March 24, 2025
- Additional Notes: The work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics–Geometry–Structure and by CRC 1442 Geometry: Deformations and Rigidity.
- Communicated by: Katrin Gelfert
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2433-2449
- MSC (2020): Primary 37E25, 37B05, 54F50
- DOI: https://doi.org/10.1090/proc/16726
- MathSciNet review: 4892618