Stability of local gamma factors arising from the doubling method for general spin groups
HTML articles powered by AMS MathViewer
- by Siddhesh Wagh;
- Proc. Amer. Math. Soc. 153 (2025), 2649-2665
- DOI: https://doi.org/10.1090/proc/16991
- Published electronically: March 24, 2025
- HTML | PDF | Request permission
Abstract:
In this work we prove that the local $\gamma$-factor arising from the doubling integrals for split general spin groups is stable. This deep property of the $\gamma$-factor constitutes an important ingredient in the application of the (generalized) doubling method to the construction of a global functorial lift. We obtain our result by adapting the arguments of Rallis and Soudry who proved the stability property for symplectic and orthogonal groups.References
- Mahdi Asgari, Local $L$-functions for split spinor groups, Canad. J. Math. 54 (2002), no. 4, 673–693. MR 1913914, DOI 10.4153/CJM-2002-025-8
- Mahdi Asgari and Freydoon Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), no. 1, 137–190. MR 2219256, DOI 10.1215/S0012-7094-06-13214-3
- Yuanqing Cai, Solomon Friedberg, David Ginzburg, and Eyal Kaplan, Doubling constructions and tensor product $L$-functions: the linear case, Invent. Math. 217 (2019), no. 3, 985–1068. MR 3989257, DOI 10.1007/s00222-019-00883-4
- Yuanqing Cai, Solomon Friedberg, and Eyal Kaplan, The generalized doubling method: local theory, Geom. Funct. Anal. 32 (2022), no. 6, 1233–1333. MR 4536463, DOI 10.1007/s00039-022-00609-4
- J. W. Cogdell and I. I. Piatetski-Shapiro, Stability of gamma factors for $\textrm {SO}(2n+1)$, Manuscripta Math. 95 (1998), no. 4, 437–461. MR 1618194, DOI 10.1007/s002290050040
- J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi, Stability of $\gamma$-factors for quasi-split groups, J. Inst. Math. Jussieu 7 (2008), no. 1, 27–66. MR 2398146, DOI 10.1017/S1474748007000163
- Pierre Deligne, La conjecture de Weil pour les surfaces $K3$, Invent. Math. 15 (1972), 206–226 (French). MR 296076, DOI 10.1007/BF01404126
- Wee Teck Gan, Doubling zeta integrals and local factors for metaplectic groups, Nagoya Math. J. 208 (2012), 67–95. MR 3006697, DOI 10.1017/S002776300001059X
- Dmitry Gourevitch and Eyal Kaplan, Multiplicity one theorems for the generalized doubling method (with an appendix by Avraham Aizenbud and Dmitry Gourevitch), J. Eur. Math. Soc. (JEMS) 25 (2023), no. 8, 3007–3092. MR 4612108, DOI 10.4171/jems/1207
- Joseph Hundley and Eitan Sayag, Descent construction for GSpin groups, Mem. Amer. Math. Soc. 243 (2016), no. 1148, v+124. MR 3517154, DOI 10.1090/memo/1148
- Hervé Jacquet and Joseph Shalika, A lemma on highly ramified $\epsilon$-factors, Math. Ann. 271 (1985), no. 3, 319–332. MR 787183, DOI 10.1007/BF01456070
- Erez M. Lapid and Stephen Rallis, On the local factors of representations of classical groups, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 309–359. MR 2192828, DOI 10.1515/9783110892703.309
- I. Piatetski-Shapiro and S. Rallis, $\epsilon$ factor of representations of classical groups, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 13, 4589–4593. MR 848553, DOI 10.1073/pnas.83.13.4589
- Stephen Rallis and David Soudry, Stability of the local gamma factor arising from the doubling method, Math. Ann. 333 (2005), no. 2, 291–313. MR 2195117, DOI 10.1007/s00208-005-0674-y
- Shunsuke Yamana, L-functions and theta correspondence for classical groups, Invent. Math. 196 (2014), no. 3, 651–732. MR 3211043, DOI 10.1007/s00222-013-0476-x
- Qing Zhang, Stability of Rankin-Selberg gamma factors for $\textrm {Sp}(2n)$, $\widetilde \textrm {Sp}(2n)$ and $\textrm {U}(n,n)$, Int. J. Number Theory 13 (2017), no. 9, 2393–2432. MR 3704368, DOI 10.1142/S1793042117501317
Bibliographic Information
- Siddhesh Wagh
- Affiliation: Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
- MR Author ID: 1328105
- ORCID: 0000-0002-9415-0880
- Email: waghsiddhesh@gmail.com
- Received by editor(s): July 19, 2021
- Received by editor(s) in revised form: May 1, 2024
- Published electronically: March 24, 2025
- Additional Notes: The author was supported by the Israel Science Foundation grants nos. 376/21, 421/17 and 1221/17.
- Communicated by: Benjamin Brubaker
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2649-2665
- MSC (2020): Primary 22E50
- DOI: https://doi.org/10.1090/proc/16991
- MathSciNet review: 4892634