Simplicial pseudohyperplane arrangements give weak Garside groups
HTML articles powered by AMS MathViewer
- by Katherine M. Goldman;
- Proc. Amer. Math. Soc. 153 (2025), 2283-2297
- DOI: https://doi.org/10.1090/proc/17059
- Published electronically: March 24, 2025
- HTML | PDF | Request permission
Abstract:
In this note we connect the language of Bessis’s Garisde categories with Salvetti’s metrical-hemisphere complexes in order to find new examples of weak Garside groups. As our main example, we show that the fundamental group of the (appropriately defined) complexified complement of a pseudohyperplane arrangement is a weak Garside group. As a consequence of the Folkman-Lawrence topological realization theorem, we also show that the fundamental group of the Salvetti complex of a (“simplicial”) oriented matroid is a weak Garside group. This provides novel examples of weak Garside groups.References
- Jason Behrstock and Cornelia Druţu, Combinatorial higher dimensional isoperimetry and divergence, J. Topol. Anal. 11 (2019), no. 3, 499–534. MR 3999511, DOI 10.1142/S1793525319500225
- David Bessis, Garside categories, periodic loops and cyclic set, Preprint, arXiv:math/0610778, 2006.
- David Bessis, Finite complex reflection arrangements are $K(\pi ,1)$, Ann. of Math. (2) 181 (2015), no. 3, 809–904. MR 3296817, DOI 10.4007/annals.2015.181.3.1
- Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271 (German). MR 323910, DOI 10.1007/BF01406235
- Raul Cordovil, On the homotopy type of the Salvetti complexes determined by simplicial arrangements, European J. Combin. 15 (1994), no. 3, 207–215. MR 1273939, DOI 10.1006/eujc.1994.1022
- Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302 (French). MR 422673, DOI 10.1007/BF01406236
- Priyavrat Deshpande, On arrangements of pseudohyperplanes, Proc. Indian Acad. Sci. Math. Sci. 126 (2016), no. 3, 399–420. MR 3531858, DOI 10.1007/s12044-016-0286-3
- Emanuele Delucchi and Michael J. Falk, An equivariant discrete model for complexified arrangement complements, Proc. Amer. Math. Soc. 145 (2017), no. 3, 955–970. MR 3589296, DOI 10.1090/proc/13328
- Patrick Dehornoy and Luis Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. (3) 79 (1999), no. 3, 569–604. MR 1710165, DOI 10.1112/S0024611599012071
- Jon Folkman and Jim Lawrence, Oriented matroids, J. Combin. Theory Ser. B 25 (1978), no. 2, 199–236. MR 511992, DOI 10.1016/0095-8956(78)90039-4
- F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254. MR 248801, DOI 10.1093/qmath/20.1.235
- Branko Grünbaum, Convex polytopes, volume 16. Springer, 1967.
- Thomas Haettel and Jingyin Huang, Lattices, Garside structures and weakly modular graphs, J. Algebra 656 (2024), 226–258. MR 4759503, DOI 10.1016/j.jalgebra.2023.08.034
- Jingyin Huang and Damian Osajda, Helly meets Garside and Artin, Invent. Math. 225 (2021), no. 2, 395–426. MR 4285138, DOI 10.1007/s00222-021-01030-8
- Arnaldo Mandel, TOPOLOGY OF ORIENTED MATROIDS, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–University of Waterloo (Canada). MR 2632449
- Mario Salvetti, On the homotopy theory of complexes associated to metrical-hemisphere complexes, Discrete Math. 113 (1993), no. 1-3, 155–177. MR 1212876, DOI 10.1016/0012-365X(93)90514-T
- S. Wenger, Isoperimetric inequalities of Euclidean type in metric spaces, Geom. Funct. Anal. 15 (2005), no. 2, 534–554. MR 2153909, DOI 10.1007/s00039-005-0515-x
- Gunter Matthias Ziegler, ALGEBRAIC COMBINATORICS OF HYPERPLANE ARRANGEMENTS, ProQuest LLC, Ann Arbor, MI, 1987. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941139
Bibliographic Information
- Katherine M. Goldman
- Affiliation: Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
- MR Author ID: 1621306
- ORCID: 0000-0002-5421-2311
- Email: kat.goldman@mcgill.ca
- Received by editor(s): November 3, 2023
- Received by editor(s) in revised form: July 30, 2024
- Published electronically: March 24, 2025
- Communicated by: Genevieve S. Walsh
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2283-2297
- MSC (2020): Primary 20F65; Secondary 05B35, 32S22
- DOI: https://doi.org/10.1090/proc/17059
- MathSciNet review: 4892608