Failures of integral Springer’s Theorem
HTML articles powered by AMS MathViewer
- by Nicolas Daans, Vítězslav Kala, Jakub Krásenský and Pavlo Yatsyna;
- Proc. Amer. Math. Soc. 153 (2025), 2369-2379
- DOI: https://doi.org/10.1090/proc/17141
- Published electronically: April 9, 2025
- HTML | PDF
Abstract:
We discuss the phenomenon where an element in a number field is not integrally represented by a given positive definite quadratic form, but becomes integrally represented by this form over a totally real extension of odd degree. We prove that this phenomenon happens infinitely often, and, conversely, establish finiteness results about the situation when the quadratic form is fixed.References
- Constantin N. Beli, Integral spinor norm groups over dyadic local fields, J. Number Theory 102 (2003), no. 1, 125–182. MR 1994477, DOI 10.1016/S0022-314X(03)00057-X
- Constantin N. Beli, Representations of integral quadratic forms over dyadic local fields, Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 100–112. MR 2237274, DOI 10.1090/S1079-6762-06-00165-X
- Constantin N. Beli, A new approach to classification of integral quadratic forms over dyadic local fields, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1599–1617. MR 2563742, DOI 10.1090/S0002-9947-09-04802-8
- C. N. Beli, Representations of quadratic lattices over dyadic local fields, arXiv:1905.04552v2, 2022.
- M. Bhargava and J. Hanke, Universal quadratic forms and the $290$-theorem, Preprint, 2011.
- Manjul Bhargava, On the Conway-Schneeberger fifteen theorem, Quadratic forms and their applications (Dublin, 1999) Contemp. Math., vol. 272, Amer. Math. Soc., Providence, RI, 2000, pp. 27–37. MR 1803359, DOI 10.1090/conm/272/04395
- Richard Elman, Nikita Karpenko, and Alexander Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008. MR 2427530, DOI 10.1090/coll/056
- Z. He, Arithmetic Springer theorem and $n$-universality under field extensions, arXiv:2312.09560, 2024.
- Zilong He, Yong Hu, and Fei Xu, On indefinite $k$-universal integral quadratic forms over number fields, Math. Z. 304 (2023), no. 1, Paper No. 20, 26. MR 4581167, DOI 10.1007/s00209-023-03280-z
- John S. Hsia, Yoshiyuki Kitaoka, and Martin Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132–141. MR 560499, DOI 10.1515/crll.1978.301.132
- J. S. Hsia, Representations by spinor genera, Pacific J. Math. 63 (1976), no. 1, 147–152. MR 424685
- Vítězslav Kala, Number fields without universal quadratic forms of small rank exist in most degrees, Math. Proc. Cambridge Philos. Soc. 174 (2023), no. 2, 225–231. MR 4545204, DOI 10.1017/S0305004122000214
- Vítězslav Kala, Universal quadratic forms and indecomposables in number fields: a survey, Commun. Math. 31 (2023), no. 2, 81–114. MR 4621253
- Myung-Hwan Kim, Recent developments on universal forms, Algebraic and arithmetic theory of quadratic forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 215–228. MR 2058677, DOI 10.1090/conm/344/06218
- Daejun Kim and Seok Hyeong Lee, Lifting problem for universal quadratic forms over totally real cubic number fields, Bull. Lond. Math. Soc. 56 (2024), no. 3, 1192–1206. MR 4735613, DOI 10.1112/blms.12988
- Jakub Krásenský, A cubic ring of integers with the smallest Pythagoras number, Arch. Math. (Basel) 118 (2022), no. 1, 39–48. MR 4371163, DOI 10.1007/s00013-021-01662-5
- L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173–175 (German). MR 1578994, DOI 10.1515/crll.1857.53.173
- Vítězslav Kala and Pavlo Yatsyna, Lifting problem for universal quadratic forms, Adv. Math. 377 (2021), Paper No. 107497, 24. MR 4182914, DOI 10.1016/j.aim.2020.107497
- Vítězslav Kala and Pavlo Yatsyna, On Kitaoka’s conjecture and lifting problem for universal quadratic forms, Bull. Lond. Math. Soc. 55 (2023), no. 2, 854–864. MR 4581328, DOI 10.1112/blms.12762
- V. Kala and P. Yatsyna, Even better sums of squares over quintic and cyclotomic fields, arXiv:2402.03850, 2024.
- D. G. Northcott, An inequality in the theory of arithmetic on algebraic varieties, Proc. Cambridge Philos. Soc. 45 (1949), 502–509. MR 33094, DOI 10.1017/s0305004100025202
- O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000. Reprint of the 1973 edition. MR 1754311
- Carl Ludwig Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. (2) 46 (1945), 302–312. MR 12092, DOI 10.2307/1969025
- Rainer Schulze-Pillot, Representation by integral quadratic forms—a survey, Algebraic and arithmetic theory of quadratic forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 303–321. MR 2060206, DOI 10.1090/conm/344/06226
- Tonny Albert Springer, Sur les formes quadratiques d’indice zéro, C. R. Acad. Sci. Paris 234 (1952), 1517–1519 (French). MR 47021
- Fei Xu, Arithmetic Springer theorem on quadratic forms under field extensions of odd degree, Integral quadratic forms and lattices (Seoul, 1998) Contemp. Math., vol. 249, Amer. Math. Soc., Providence, RI, 1999, pp. 175–197. MR 1732359, DOI 10.1090/conm/249/03757
- Fei Xu and Yang Zhang, On indefinite and potentially universal quadratic forms over number fields, Trans. Amer. Math. Soc. 375 (2022), no. 4, 2459–2480. MR 4391724, DOI 10.1090/tran/8601
Bibliographic Information
- Nicolas Daans
- Affiliation: Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic; \normalfont{and} Department of Mathematics, Faculty of Science, KU Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium
- MR Author ID: 1493992
- ORCID: 0000-0003-2217-7758
- Email: nicolas.daans@kuleuven.be
- Vítězslav Kala
- Affiliation: Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
- ORCID: 0000-0001-5515-6801
- Email: vitezslav.kala@matfyz.cuni.cz
- Jakub Krásenský
- Affiliation: Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00 Praha 6, Czech Republic
- ORCID: 0000-0001-7142-0959
- Email: jakub.krasensky@fit.cvut.cz
- Pavlo Yatsyna
- Affiliation: Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
- MR Author ID: 1047455
- ORCID: 0000-0003-2298-8446
- Email: p.yatsyna@matfyz.cuni.cz
- Received by editor(s): April 26, 2024
- Received by editor(s) in revised form: October 29, 2024, and November 8, 2024
- Published electronically: April 9, 2025
- Additional Notes: The first and second authors were supported by Czech Science Foundation grant 21-00420M. The first and fourth authors were supported by Charles University programme PRIMUS/24/SCI/010. The fourth author was supported by UNCE/24/SCI/022.
- Communicated by: Ling Long
- © Copyright 2025 by the authors
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2369-2379
- MSC (2020): Primary 11E12, 11H55, 11R80
- DOI: https://doi.org/10.1090/proc/17141
- MathSciNet review: 4892613