Deformed $\mathrm {G}_2$-instantons on $\mathbb {R}^4 \times S^3$
HTML articles powered by AMS MathViewer
- by Udhav Fowdar;
- Proc. Amer. Math. Soc. 153 (2025), 2621-2638
- DOI: https://doi.org/10.1090/proc/17154
- Published electronically: April 3, 2025
- HTML | PDF | Request permission
Abstract:
In this note we construct explicit examples of deformed $\mathrm {G}_2$-instantons, also called Donaldson-Thomas connections, on $\mathbb {R}^4 \times S^3$ endowed with the torsion free $\mathrm {G}_2$-structure found by Brandhuber et al. [Nuclear Phys. B 611 (2001), pp. 179–204] and on $\mathbb {R}^+\times S^3 \times S^3$ endowed with the Bryant-Salamon conical $\mathrm {G}_2$-structure [Duke Math. J. 58 (1989), pp. 829–850]. These are the first such non-trivial examples on a $\mathrm {G}_2$ manifold. As a by-product of our investigation we also construct an associative foliation of $\mathbb {R}^4\times S^3$ by $\mathbb {R}^2 \times S^1$.References
- Ya. V. Bazaikin and O. A. Bogoyavlenskaya, Complete Riemannian metrics with holonomy group $G_2$ on deformations of cones over $S^3\times S^3$, Math. Notes 93 (2013), no. 5-6, 643–653. Translation of Mat. Zametki 93 (2013), no. 5, 645–657. MR 3206014, DOI 10.1134/S0001434613050015
- Andreas Brandhuber, Jaume Gomis, Steven S. Gubser, and Sergei Gukov, Gauge theory at large $N$ and new $G_2$ holonomy metrics, Nuclear Phys. B 611 (2001), no. 1-3, 179–204. MR 1857379, DOI 10.1016/S0550-3213(01)00340-6
- Robert L. Bryant, Non-embedding and non-extension results in special holonomy, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 346–367. MR 2681703, DOI 10.1093/acprof:oso/9780199534920.003.0017
- Robert L. Bryant and Simon M. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989), no. 3, 829–850. MR 1016448, DOI 10.1215/S0012-7094-89-05839-0
- Ramón Reyes Carrión, A generalization of the notion of instanton, Differential Geom. Appl. 8 (1998), no. 1, 1–20. MR 1601546, DOI 10.1016/S0926-2245(97)00013-2
- Gao Chen, The J-equation and the supercritical deformed Hermitian-Yang-Mills equation, Invent. Math. 225 (2021), no. 2, 529–602. MR 4285141, DOI 10.1007/s00222-021-01035-3
- Simon Chiossi and Simon Salamon, The intrinsic torsion of $\rm SU(3)$ and $G_2$ structures, Differential geometry, Valencia, 2001, World Sci. Publ., River Edge, NJ, 2002, pp. 115–133. MR 1922042
- Tristan C. Collins, Dan Xie, and Shing-Tung Yau, The deformed Hermitian-Yang-Mills equation in geometry and physics, Geometry and physics. Vol. I, Oxford Univ. Press, Oxford, 2018, pp. 69–90. MR 3932257
- Tristan C. Collins and Shing-Tung Yau, Moment maps, nonlinear PDE and stability in mirror symmetry, I: geodesics, Ann. PDE 7 (2021), no. 1, Paper No. 11, 73. MR 4242135, DOI 10.1007/s40818-021-00100-7
- Diego Conti, Half-flat nilmanifolds, Math. Ann. 350 (2011), no. 1, 155–168. MR 2785766, DOI 10.1007/s00208-010-0535-1
- J.-H. Eschenburg and McKenzie Y. Wang, The initial value problem for cohomogeneity one Einstein metrics, J. Geom. Anal. 10 (2000), no. 1, 109–137. MR 1758585, DOI 10.1007/BF02921808
- Lorenzo Foscolo, Mark Haskins, and Johannes Nordström, Infinitely many new families of complete cohomogeneity one $\rm G_2$-manifolds: $\rm G_2$ analogues of the Taub-NUT and Eguchi-Hanson spaces, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 7, 2153–2220. MR 4269412, DOI 10.4171/jems/1051
- Nigel Hitchin, Stable forms and special metrics, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) Contemp. Math., vol. 288, Amer. Math. Soc., Providence, RI, 2001, pp. 70–89. MR 1871001, DOI 10.1090/conm/288/04818
- Spiro Karigiannis and Naichung Conan Leung, Hodge theory for $G_2$-manifolds: intermediate Jacobians and Abel-Jacobi maps, Proc. Lond. Math. Soc. (3) 99 (2009), no. 2, 297–325. MR 2533667, DOI 10.1112/plms/pdp004
- Spiro Karigiannis, Naichung Conan Leung, and Jason D. Lotay (eds.), Lectures and surveys on $\mathrm {G_2}$-manifolds and related topics, Fields Institute Communications, vol. 84, Springer, New York, [2020] ©2020. Including lectures from the Minischool and Workshop on $\mathrm {G_2}$-Manifolds held as part of the Major Thematic Program on Geometric Analysis at the Fields Institute, Toronto, August 19–25, 2017. MR 4295851, DOI 10.1007/978-1-0716-0577-6
- Spiro Karigiannis and Jason D. Lotay, Bryant-Salamon $\rm G_2$ manifolds and coassociative fibrations, J. Geom. Phys. 162 (2021), Paper No. 104074, 60. MR 4199397, DOI 10.1016/j.geomphys.2020.104074
- Kotaro Kawai and Hikaru Yamamoto, Deformation theory of deformed Hermitian Yang-Mills connections and deformed Donaldson-Thomas connections, J. Geom. Anal. 32 (2022), no. 5, Paper No. 157, 51. MR 4390626, DOI 10.1007/s12220-022-00898-z
- Jae-Hyouk Lee and Naichung Conan Leung, Geometric structures on $G_2$ and $\textrm {Spin}(7)$-manifolds, Adv. Theor. Math. Phys. 13 (2009), no. 1, 1–31. MR 2471851, DOI 10.4310/atmp.2009.v13.n1.a1
- Naichung Conan Leung, Shing-Tung Yau, and Eric Zaslow, From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1319–1341. MR 1894858, DOI 10.4310/ATMP.2000.v4.n6.a5
- Jason Dean Lotay, Calibrated submanifolds of $\Bbb R^7$ and $\Bbb R^8$ with symmetries, Q. J. Math. 58 (2007), no. 1, 53–70. MR 2305050, DOI 10.1093/qmath/hal015
- Jason D. Lotay and Goncalo Oliveira, $\rm SU(2)^2$-invariant $G_2$-instantons, Math. Ann. 371 (2018), no. 1-2, 961–1011. MR 3788869, DOI 10.1007/s00208-017-1636-x
- Jason D. Lotay and Gonçalo Oliveira, Examples of deformed $\rm G_2$-instantons/Donaldson-Thomas connections, Ann. Inst. Fourier (Grenoble) 72 (2022), no. 1, 339–366 (English, with English and French summaries). MR 4448598, DOI 10.5802/aif.3465
- Bernard Malgrange, Sur les points singuliers des équations différentielles, Enseign. Math. (2) 20 (1974), 147–176 (French). MR 368074
- Marcos Mariño, Ruben Minasian, Gregory Moore, and Andrew Strominger, Nonlinear instantons from supersymmetric $p$-branes, J. High Energy Phys. 1 (2000), Paper 5, 32. MR 1743311, DOI 10.1088/1126-6708/2000/01/005
- Gang Tian, Gauge theory and calibrated geometry. I, Ann. of Math. (2) 151 (2000), no. 1, 193–268. MR 1745014, DOI 10.2307/121116
- Karen K. Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42. MR 648356, DOI 10.1007/BF01947069
Bibliographic Information
- Udhav Fowdar
- Affiliation: Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10124, Torino, Italy
- MR Author ID: 1379601
- ORCID: 0000-0002-9744-8252
- Email: udhav.fowdar@unito.it
- Received by editor(s): October 24, 2024
- Published electronically: April 3, 2025
- Additional Notes: This work was supported by the São Paulo Research Foundation (FAPESP) [2021/07249-0].
- Communicated by: Jiaping Wang
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2621-2638
- MSC (2020): Primary 53C07, 53C29
- DOI: https://doi.org/10.1090/proc/17154
- MathSciNet review: 4892632