Categorified open topological field theories
HTML articles powered by AMS MathViewer
- by Lukas Müller and Lukas Woike;
- Proc. Amer. Math. Soc. 153 (2025), 2381-2396
- DOI: https://doi.org/10.1090/proc/17161
- Published electronically: April 3, 2025
- HTML | PDF | Request permission
Abstract:
In this short note, we classify linear categorified open topological field theories in dimension two by pivotal Grothendieck-Verdier categories, a type of monoidal category equipped with a weak, not necessarily rigid duality. In combination with recently developed string-net techniques, this leads to a new description of the spaces of conformal blocks of Drinfeld centers $Z(\mathcal {C})$ of pivotal finite tensor categories $\mathcal {C}$ in terms of the modular envelope of the cyclic associative operad. If $\mathcal {C}$ is unimodular, we prove that the space of conformal blocks inherits the structure of a module over the algebra of class functions of $\mathcal {C}$ for every free boundary component. As a further application, we prove that the sewing along a boundary circle for the modular functor for $Z(\mathcal {C})$ can be decomposed into a sewing procedure along an interval and the application of the partial trace. Finally, we construct mapping class group representations from Grothendieck-Verdier categories that are not necessarily rigid and make precise how these generalize existing constructions.References
- R. Allen, S. Lentner, C. Schweigert, and S. Wood, Duality structures for module categories of vertex operator algebras and the Feigin Fuchs boson, arXiv:2107.05718 [math.QA], 2021.
- B. Bartlett, Three-dimensional TQFTs via string-nets and two-dimensional surgery, arXiv:2206.13262 [math.QA], 2022.
- Mitya Boyarchenko and Vladimir Drinfeld, A duality formalism in the spirit of Grothendieck and Verdier, Quantum Topol. 4 (2013), no. 4, 447–489. MR 3134025, DOI 10.4171/QT/45
- Adrien Brochier, David Jordan, and Noah Snyder, On dualizability of braided tensor categories, Compos. Math. 157 (2021), no. 3, 435–483. MR 4228258, DOI 10.1112/s0010437x20007630
- Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
- A. Brochier and L. Woike, A classification of modular functors via factorization homology, arXiv:2212.11259 [math.QA], 2022.
- David Ben-Zvi, Adrien Brochier, and David Jordan, Integrating quantum groups over surfaces, J. Topol. 11 (2018), no. 4, 874–917. MR 3847209, DOI 10.1112/topo.12072
- F. Costantino, N. Geer, and B. Patureau-Mirand, Admissible skein modules, arXiv:2302.04493 [math.GT], 2023.
- K. Costello, The A-infinity operad and the moduli space of curves, arXiv:math/0402015 [math.AG], 2004.
- Kevin Costello, A dual version of the ribbon graph decomposition of moduli space, Geom. Topol. 11 (2007), 1637–1652. MR 2350462, DOI 10.2140/gt.2007.11.1637
- Kevin Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), no. 1, 165–214. MR 2298823, DOI 10.1016/j.aim.2006.06.004
- Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder, Dualizable tensor categories, Mem. Amer. Math. Soc. 268 (2020), no. 1308, vii+88. MR 4254952, DOI 10.1090/memo/1308
- Thibault D. Décoppet, Rigid and separable algebras in fusion 2-categories, Adv. Math. 419 (2023), Paper No. 108967, 53. MR 4561584, DOI 10.1016/j.aim.2023.108967
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, An analogue of Radford’s $S^4$ formula for finite tensor categories, Int. Math. Res. Not. 54 (2004), 2915–2933. MR 2097289, DOI 10.1155/S1073792804141445
- Pavel Etingof and Viktor Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), no. 3, 627–654, 782–783 (English, with English and Russian summaries). MR 2119143, DOI 10.17323/1609-4514-2004-4-3-627-654
- J. Fuchs, C. Schweigert, and Y. Yang, String-net models for pivotal bicategories, arXiv:2302.01468 [math.QA], 2023.
- Jeffrey Giansiracusa, The framed little 2-discs operad and diffeomorphisms of handlebodies, J. Topol. 4 (2011), no. 4, 919–941. MR 2860346, DOI 10.1112/jtopol/jtr021
- Sam Gunningham, David Jordan, and Pavel Safronov, The finiteness conjecture for skein modules, Invent. Math. 232 (2023), no. 1, 301–363. MR 4557403, DOI 10.1007/s00222-022-01167-0
- E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 167–201. MR 1358617
- E. Getzler and M. M. Kapranov, Modular operads, Compositio Math. 110 (1998), no. 1, 65–126. MR 1601666, DOI 10.1023/A:1000245600345
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI 10.1007/BF01388737
- A. Kirillov. String-net model of Turaev-Viro invariants. arXiv:1106.6033 [math.AT], 2011.
- Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
- Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
- C. I. Lazaroiu, On the structure of open-closed topological field theory in two dimensions, Nuclear Phys. B 603 (2001), no. 3, 497–530. MR 1839382, DOI 10.1016/S0550-3213(01)00135-3
- Aaron D. Lauda and Hendryk Pfeiffer, Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras, Topology Appl. 155 (2008), no. 7, 623–666. MR 2395583, DOI 10.1016/j.topol.2007.11.005
- M. A. Levin and X.-G. Wen. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B, 71:045110, 2005.
- Volodymyr V. Lyubashenko, Invariants of $3$-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995), no. 3, 467–516. MR 1354257, DOI 10.1007/BF02101805
- V. Lyubashenko, Modular transformations for tensor categories, J. Pure Appl. Algebra 98 (1995), no. 3, 279–327. MR 1324034, DOI 10.1016/0022-4049(94)00045-K
- V. Lyubashenko, Ribbon abelian categories as modular categories, J. Knot Theory Ramifications 5 (1996), no. 3, 311–403. MR 1405715, DOI 10.1142/S0218216596000229
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038, DOI 10.1007/BF01238857
- G. Moore and G. Segal, D-branes and K-theory in 2D topological field theory, arXiv:hep-th/0609042, 2006.
- L. Müller, C. Schweigert, L. Woike, and Y. Yang, The Lyubashenko modular functor for Drinfeld centers via non-semisimple string-nets, arXiv:2312.14010 [math.QA], 2023.
- Lukas Müller and Lukas Woike, Cyclic framed little disks algebras, Grothendieck-Verdier duality and handlebody group representations, Q. J. Math. 74 (2023), no. 1, 163–245. MR 4571627, DOI 10.1093/qmath/haac015
- Lukas Müller and Lukas Woike, Classification of consistent systems of handlebody group representations, Int. Math. Res. Not. IMRN 6 (2024), 4767–4803. MR 4721656, DOI 10.1093/imrn/rnad178
- Lukas Müller and Lukas Woike, The distinguished invertible object as ribbon dualizing object in the Drinfeld center, Selecta Math. (N.S.) 30 (2024), no. 5, Paper No. 98, 27. MR 4814800, DOI 10.1007/s00029-024-00975-x
- R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299–339. MR 919235, DOI 10.1007/BF01223515
- Graeme Segal, Two-dimensional conformal field theories and modular functors, IXth International Congress on Mathematical Physics (Swansea, 1988) Hilger, Bristol, 1989, pp. 22–37. MR 1033753
- Kenichi Shimizu, On unimodular finite tensor categories, Int. Math. Res. Not. IMRN 1 (2017), 277–322. MR 3632104, DOI 10.1093/imrn/rnv394
- Kenichi Shimizu, The monoidal center and the character algebra, J. Pure Appl. Algebra 221 (2017), no. 9, 2338–2371. MR 3631720, DOI 10.1016/j.jpaa.2016.12.037
- Kenichi Shimizu, Non-degeneracy conditions for braided finite tensor categories, Adv. Math. 355 (2019), 106778, 36. MR 3996323, DOI 10.1016/j.aim.2019.106778
- Kenichi Shimizu, Ribbon structures of the Drinfeld center of a finite tensor category, Kodai Math. J. 46 (2023), no. 1, 75–114. MR 4560990, DOI 10.2996/kmj46106
- Ulrike Tillmann, $\scr S$-structures for $k$-linear categories and the definition of a modular functor, J. London Math. Soc. (2) 58 (1998), no. 1, 208–228. MR 1670122, DOI 10.1112/S0024610798006383
- Vladimir G. Turaev, Quantum invariants of knots and 3-manifolds, Second revised edition, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 2010. MR 2654259, DOI 10.1515/9783110221848
- Nathalie Wahl and Craig Westerland, Hochschild homology of structured algebras, Adv. Math. 288 (2016), 240–307. MR 3436386, DOI 10.1016/j.aim.2015.10.017
Bibliographic Information
- Lukas Müller
- Affiliation: Perimeter Institute, N2L 2Y5 Waterloo, Canada
- Email: lmueller@perimeterinstitute.ca
- Lukas Woike
- Affiliation: Université Bourgogne Europe, CNRS, IMB UMR 5584, F-21000 Dijon, France
- MR Author ID: 1277959
- ORCID: 0000-0003-0516-7814
- Email: lukas.woike@u-bourgogne.fr
- Received by editor(s): July 1, 2024
- Received by editor(s) in revised form: November 12, 2024
- Published electronically: April 3, 2025
- Additional Notes: The first author was supported by the Simons Collaboration on Global Categorical Symmetries. Research at Perimeter Institute was supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Colleges and Universities. The Perimeter Institute is in the Haldimand Tract, land promised to the Six Nations.
The second author was supported by the ANR project CPJ no.ANR-22-CPJ1-0001-01 at the Institut de Mathématiques de Bourgogne (IMB). The IMB was supported by the EIPHI Graduate School (contract ANR-17-EURE-0002). - Communicated by: Chelsea Walton
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2381-2396
- MSC (2020): Primary 18M20; Secondary 18M85
- DOI: https://doi.org/10.1090/proc/17161
- MathSciNet review: 4892614