Convergence rate of the Euler-Maruyama scheme to density dependent SDEs driven by $\alpha$-stable additive noise
HTML articles powered by AMS MathViewer
- by Ke Song and Zimo Hao;
- Proc. Amer. Math. Soc. 153 (2025), 2591-2607
- DOI: https://doi.org/10.1090/proc/17169
- Published electronically: March 26, 2025
- HTML | PDF | Request permission
Abstract:
In this paper, we establish the weak convergence rate of density-dependent stochastic differential equations with bounded drift driven by $\alpha$-stable processes with $\alpha \in (1,2)$. The well-posedness of these equations has been previously obtained in Wu and Hao [Stochastic Process. Appl. 164 (2023), pp. 416–442]. We derive an explicit convergence rate in total variation for the Euler-Maruyama scheme, employing a technique rooted in Hao [McKean-Vlasov SDEs with singular drifts, Thesis (Ph.D.), Bielefeld: Universitatät Bielefeld; 2023].References
- Viorel Barbu and Michael Röckner, Probabilistic representation for solutions to nonlinear Fokker-Planck equations, SIAM J. Math. Anal. 50 (2018), no. 4, 4246–4260. MR 3835244, DOI 10.1137/17M1162780
- Viorel Barbu and Michael Röckner, From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Probab. 48 (2020), no. 4, 1902–1920. MR 4124528, DOI 10.1214/19-AOP1410
- Viorel Barbu and Michael Röckner, Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 3, 702–713. MR 4297237, DOI 10.1007/s40072-020-00181-8
- Viorel Barbu and Michael Röckner, Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations, J. Funct. Anal. 280 (2021), no. 7, Paper No. 108926, 35. MR 4205184, DOI 10.1016/j.jfa.2021.108926
- Viorel Barbu and Michael Röckner, Nonlinear Fokker-Planck equations with fractional Laplacian and McKean-Vlasov SDEs with Lévy noise, Probab. Theory Related Fields 189 (2024), no. 3-4, 849–878. MR 4771105, DOI 10.1007/s00440-024-01277-1
- Viorel Barbu and Michael Röckner, Correction to: Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs, Stoch. Partial Differ. Equ. Anal. Comput. 11 (2023), no. 1, 426–431. MR 4563705, DOI 10.1007/s40072-021-00223-9
- Viorel Barbu and Michael Röckner, Uniqueness for nonlinear Fokker-Planck equations and for McKean-Vlasov SDEs: the degenerate case, J. Funct. Anal. 285 (2023), no. 4, Paper No. 109980, 37. MR 4583740, DOI 10.1016/j.jfa.2023.109980
- Oumaima Bencheikh and Benjamin Jourdain, Convergence in total variation of the Euler-Maruyama scheme applied to diffusion processes with measurable drift coefficient and additive noise, SIAM J. Numer. Anal. 60 (2022), no. 4, 1701–1740. MR 4451313, DOI 10.1137/20M1371774
- R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc. 95 (1960), 263–273. MR 119247, DOI 10.1090/S0002-9947-1960-0119247-6
- Oleg Butkovsky, Konstantinos Dareiotis, and Máté Gerencsér, Approximation of SDEs: a stochastic sewing approach, Probab. Theory Related Fields 181 (2021), no. 4, 975–1034. MR 4344136, DOI 10.1007/s00440-021-01080-2
- Oleg Butkovsky, Konstantinos Dareiotis, and Máté Gerencsér, Strong rate of convergence of the Euler scheme for SDEs with irregular drift driven by Lévy noise, Preprint, arXiv:2204.12926, 2022.
- René Carmona and François Delarue, Probabilistic theory of mean field games with applications. II, Probability Theory and Stochastic Modelling, vol. 84, Springer, Cham, 2018. Mean field games with common noise and master equations. MR 3753660
- Zhen-Qing Chen and Xicheng Zhang, Heat kernels and analyticity of non-symmetric jump diffusion semigroups, Probab. Theory Related Fields 165 (2016), no. 1-2, 267–312. MR 3500272, DOI 10.1007/s00440-015-0631-y
- Mengyu Cheng, Zimo Hao, and Michael Röckner, Strong and weak convergence for the averaging principle of DDSDE with singular drift, Bernoulli 30 (2024), no. 2, 1586–1610. MR 4699565, DOI 10.3150/23-bej1646
- Konstantinos Dareiotis and Máté Gerencsér, On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift, Electron. J. Probab. 25 (2020), Paper No. 82, 18. MR 4125787, DOI 10.1214/20-ejp479
- Konstantinos Dareiotis, Máté Gerencsér, and Khoa Lê, Quantifying a convergence theorem of Gyöngy and Krylov, Ann. Appl. Probab. 33 (2023), no. 3, 2291–2323. MR 4583671, DOI 10.1214/22-aap1867
- Mathis Fitoussi, Benjamin Jourdain, and Stéphane Menozzi, Weak well-posedness and weak discretization error for stable-driven SDEs with Lebesgue drift, Preprint, arXiv:2405.08378, 2024.
- Zimo Hao, McKean-Vlasov SDEs with singular drifts, Thesis (Ph.D.), Bielefeld: Universität Bielefeld; 2023. 179 pp. Online version: \PrintDOI{10.4119/unibi/2980828}.
- Zimo Hao, Michael Röckner, and Xicheng Zhang, Euler scheme for density dependent stochastic differential equations, J. Differential Equations 274 (2021), 996–1014. MR 4189000, DOI 10.1016/j.jde.2020.11.018
- Zimo Hao, Michael Röckner, and Xicheng Zhang, Strong convergence of propagation of chaos for McKean-Vlasov SDEs with singular interactions, SIAM J. Math. Anal. 56 (2024), no. 2, 2661–2713. MR 4722362, DOI 10.1137/23M1556666
- Zimo Hao, Michael Röckner, and Xicheng Zhang, Second order fractional mean-field SDEs with singular kernels and measure initial data, To appear in Ann. Probab. Preprint, arXiv:2302.04392, 2024.
- Xing Huang and Zhong-Wei Liao, The Euler-Maruyama method for S(F)DEs with Hölder drift and $\alpha$-stable noise, Stoch. Anal. Appl. 36 (2018), no. 1, 28–39. MR 3750668, DOI 10.1080/07362994.2017.1371037
- Xing Huang, Panpan Ren, and Feng-Yu Wang, Distribution dependent stochastic differential equations, Front. Math. China 16 (2021), no. 2, 257–301. MR 4254653, DOI 10.1007/s11464-021-0920-y
- Pierre-Emmanuel Jabin and Zhenfu Wang, Quantitative estimates of propagation of chaos for stochastic systems with $W^{-1,\infty }$ kernels, Invent. Math. 214 (2018), no. 1, 523–591. MR 3858403, DOI 10.1007/s00222-018-0808-y
- Mark Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press, Berkeley-Los Angeles, CA, 1956, 171–197.
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
- Franziska Kühn and René L. Schilling, Strong convergence of the Euler-Maruyama approximation for a class of Lévy-driven SDEs, Stochastic Process. Appl. 129 (2019), no. 8, 2654–2680. MR 3980140, DOI 10.1016/j.spa.2018.07.018
- Daniel Lacker, Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions, Probab. Math. Phys. 4 (2023), no. 2, 377–432. MR 4595391, DOI 10.2140/pmp.2023.4.377
- Anh-Dung Le, Well-posedness of McKean-Vlasov SDEs with density-dependent drift, Preprint, arXiv:2404.19499, 2024.
- Khoa Lê, A stochastic sewing lemma and applications, Electron. J. Probab. 25 (2020), Paper No. 38, 55. MR 4089788, DOI 10.1214/20-ejp442
- Khoa Lê and Chengcheng Ling, Taming singular stochastic differential equations: a numerical method, Preprint, arXiv:2110.01343, 2021.
- Yanfang Li and Guohuan Zhao, Euler-Maruyama scheme for SDE driven by Lévy process with Hölder drift, Statist. Probab. Lett. 215 (2024), Paper No. 110220, 6. MR 4782995, DOI 10.1016/j.spl.2024.110220
- Olivier Menoukeu Pamen and Dai Taguchi, Strong rate of convergence for the Euler-Maruyama approximation of SDEs with Hölder continuous drift coefficient, Stochastic Process. Appl. 127 (2017), no. 8, 2542–2559. MR 3660882, DOI 10.1016/j.spa.2016.11.008
- R. Mikulevičius and Fanhui Xu, On the rate of convergence of strong Euler approximation for SDEs driven by Levy processes, Stochastics 90 (2018), no. 4, 569–604. MR 3784978, DOI 10.1080/17442508.2017.1381095
- Yuliya Mishura and Alexander Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, Theory Probab. Math. Statist. 103 (2020), 59–101. MR 4421344, DOI 10.1090/tpms/1135
- Panpan Ren and Feng-Yu Wang, Bismut formula for Lions derivative of distribution dependent SDEs and applications, J. Differential Equations 267 (2019), no. 8, 4745–4777. MR 3983053, DOI 10.1016/j.jde.2019.05.016
- Michael Röckner, Xiaobin Sun, and Longjie Xie, Strong and weak convergence in the averaging principle for SDEs with Hölder coefficients, Preprint, arXiv:1907.09256, 2019.
- Michael Röckner and Xicheng Zhang, Well-posedness of distribution dependent SDEs with singular drifts, Bernoulli 27 (2021), no. 2, 1131–1158. MR 4255229, DOI 10.3150/20-bej1268
- Sylvia Serfaty, Mean field limit for Coulomb-type flows, Duke Math. J. 169 (2020), no. 15, 2887–2935. With an appendix by Mitia Duerinckx and Serfaty. MR 4158670, DOI 10.1215/00127094-2020-0019
- Alain-Sol Sznitman, Topics in propagation of chaos, in École d’Été de Prob. de Saint-Flour XIX-1989, Lecture Notes in Math, Springer, Berlin, 1991, 165–251.
- Feng-Yu Wang, Singular density dependent stochastic differential equations, J. Differential Equations 361 (2023), 562–589. MR 4572442, DOI 10.1016/j.jde.2023.03.038
- Mingyan Wu and Zimo Hao, Well-posedness of density dependent SDE driven by $\alpha$-stable process with Hölder drifts, Stochastic Process. Appl. 164 (2023), 416–442. MR 4624940, DOI 10.1016/j.spa.2023.07.016
- Mingyan Wu and Zimo Hao, SDE driven by cylindrical $\alpha$-stable process with distributional drift and application, Preprint, arXiv:2305.18139, 2023.
- Xicheng Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation, J. Funct. Anal. 258 (2010), no. 4, 1361–1425. MR 2565842, DOI 10.1016/j.jfa.2009.11.006
Bibliographic Information
- Ke Song
- Affiliation: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- ORCID: 0009-0003-9072-0342
- Email: ske2022@126.com
- Zimo Hao
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
- MR Author ID: 1393166
- ORCID: 0000-0002-3804-0468
- Email: zhao@math.uni-bielefeld.de
- Received by editor(s): May 31, 2024
- Received by editor(s) in revised form: November 5, 2024, and December 5, 2024
- Published electronically: March 26, 2025
- Additional Notes: The first author was financially supported by National Key R & D Program of China (No. 2022YFA1006300) and the NSFC (No. 12426205, No. 12271030).
The second author was supported by the DFG through the CRC 1283/2 2021 - 317210226 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”. - Communicated by: Zhen-Qing Chen
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2591-2607
- MSC (2020): Primary 65C30, 60G52
- DOI: https://doi.org/10.1090/proc/17169
- MathSciNet review: 4892630