Large-scale geometry of pure mapping class groups of infinite-type surfaces
HTML articles powered by AMS MathViewer
- by Thomas Hill;
- Proc. Amer. Math. Soc. 153 (2025), 2667-2680
- DOI: https://doi.org/10.1090/proc/17181
- Published electronically: April 8, 2025
Abstract:
The work of Mann and Rafi [Geom. Topol. 27 (2023), pp. 2237–2296] gives a classification of surfaces $\Sigma$ when $\mathrm {Map}(\Sigma )$ is globally CB, locally CB, and CB generated under the technical assumption of tameness. In this article, we restrict our study to the pure mapping class group and give a complete classification without additional assumptions. In stark contrast with the rich class of examples of Mann–Rafi, we prove that $\mathrm {PMap}(\Sigma )$ is globally CB if and only if $\Sigma$ is the Loch Ness monster surface, and locally CB or CB generated if and only if $\Sigma$ has finitely many ends and is not a Loch Ness monster surface with (nonzero) punctures.References
- Javier Aramayona, Priyam Patel, and Nicholas G. Vlamis, The first integral cohomology of pure mapping class groups, Int. Math. Res. Not. IMRN 22 (2020), 8973–8996. MR 4216709, DOI 10.1093/imrn/rnaa229
- Javier Aramayona and Nicholas G. Vlamis, Big mapping class groups: an overview, In the tradition of Thurston—geometry and topology, Springer, Cham, [2020] ©2020, pp. 459–496. MR 4264585, DOI 10.1007/978-3-030-55928-1_{1}2
- Yves Cornulier and Pierre de la Harpe, Metric geometry of locally compact groups, EMS Tracts in Mathematics, vol. 25, European Mathematical Society (EMS), Zürich, 2016. Winner of the 2016 EMS Monograph Award. MR 3561300, DOI 10.4171/166
- M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), no. 1, 135–206 (German). Das arithmetische Feld auf Flächen. MR 1555438, DOI 10.1007/BF02547712
- George Domat, Hannah Hoganson, and Sanghoon Kwak, Coarse geometry of pure mapping class groups of infinite graphs, Adv. Math. 413 (2023), Paper No. 108836, 57. MR 4530621, DOI 10.1016/j.aim.2022.108836
- Ryan Dickmann, Automatic continuity of pure mapping class groups, New York J. Math. 30 (2024), 979–997. MR 4779655
- George Domat, Big pure mapping class groups are never perfect, Math. Res. Lett. 29 (2022), no. 3, 691–726. Appendix with Ryan Dickmann. MR 4516036, DOI 10.4310/mrl.2022.v29.n3.a4
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Thomas Hill, Sanghoon Kwak, and Rebecca Rechkin, Coarsely bounded generating sets for mapping class group of infinite-type surfaces, arXiv:2312.02361, 2023.
- B. Kerékjártó, Vorlesungen über topologie: I, flächentopologie, Springer Berlin, Heidelberg, 1923, https://link.springer.com/book/10.1007/978-3-642-50825-7.
- W. B. R. Lickorish, A finite set of generators for the homeotopy group of a $2$-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769–778. MR 171269, DOI 10.1017/s030500410003824x
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- Kathryn Mann and Kasra Rafi, Large-scale geometry of big mapping class groups, Geom. Topol. 27 (2023), no. 6, 2237–2296. MR 4634747, DOI 10.2140/gt.2023.27.2237
- Priyam Patel and Nicholas G. Vlamis, Algebraic and topological properties of big mapping class groups, Algebr. Geom. Topol. 18 (2018), no. 7, 4109–4142. MR 3892241, DOI 10.2140/agt.2018.18.4109
- Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269. MR 143186, DOI 10.1090/S0002-9947-1963-0143186-0
- Rita Jiménez Rolland and Israel Morales. On the large scale geometry of big mapping class groups of surfaces with a unique maximal end. To appear in Michigan Mathematical Journal, 2023.
- Christian Rosendal, Coarse geometry of topological groups, Cambridge Tracts in Mathematics, vol. 223, Cambridge University Press, Cambridge, 2022. MR 4327092
Bibliographic Information
- Thomas Hill
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- MR Author ID: 1403987
- Email: thill@math.utah.edu
- Received by editor(s): November 28, 2023
- Received by editor(s) in revised form: March 27, 2024, and May 17, 2024
- Published electronically: April 8, 2025
- Additional Notes: The author was supported from RTG DMS–1840190.
- Communicated by: Genevieve S. Walsh
- © Copyright 2025 by Thomas Hill
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2667-2680
- MSC (2020): Primary 57K20
- DOI: https://doi.org/10.1090/proc/17181