Quasi-positive curvature and projectivity
HTML articles powered by AMS MathViewer
- by Yiyang Du and Yanyan Niu;
- Proc. Amer. Math. Soc. 153 (2025), 2609-2620
- DOI: https://doi.org/10.1090/proc/17187
- Published electronically: March 26, 2025
- HTML | PDF | Request permission
Abstract:
In this paper, we first prove that a compact Kähler manifold is projective if it satisfies certain quasi-positive curvature conditions, including quasi-positive $S_2^\perp$, $S_2^+$, $\operatorname {Ric}_3^\perp$, $\operatorname {Ric}_3^+$ or $2$-quasi-positive $\operatorname {Ric}_k$. Subsequently, we prove that a compact Kähler manifold with a special holonomy group is projective if it satisfies some non-negative curvature condition, including non-negative $S_2^\perp$, $S_2^+$, $\operatorname {Ric}_3^\perp$, $\operatorname {Ric}_3^+$ or $2$-non-negative $\operatorname {Ric}_k$.References
- Kyle Broder and Kai Tang, On the weighted orthogonal Ricci curvature, J. Geom. Phys. 193 (2023), Paper No. 104783, 13. MR 4633721, DOI 10.1016/j.geomphys.2023.104783
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545 (French). MR 1191735, DOI 10.24033/asens.1658
- Jianchun Chu, Man-Chun Lee, and Luen-Fai Tam, Kähler manifolds and mixed curvature, Trans. Amer. Math. Soc. 375 (2022), no. 11, 7925–7944. MR 4491442, DOI 10.1090/tran/8735
- J. Chu, M.-C. Lee, and J. Zhu, On Kähler manifolds with non-negative mixed curvature, arXiv:2408.14043, 2024.
- J.-P. Demailly, Complex analytic and differential geometry, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- Gordon Heier and Bun Wong, On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math. 25 (2020), 219–238. MR 4106891, DOI 10.4171/dm/745
- K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28–48. MR 68871, DOI 10.2307/1969701
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503
- Lei Ni, Liouville theorems and a Schwarz lemma for holomorphic mappings between Kähler manifolds, Comm. Pure Appl. Math. 74 (2021), no. 5, 1100–1126. MR 4230067, DOI 10.1002/cpa.21987
- Lei Ni, The fundamental group, rational connectedness and the positivity of Kähler manifolds, J. Reine Angew. Math. 774 (2021), 267–299. MR 4250473, DOI 10.1515/crelle-2020-0040
- Lei Ni, Holonomy and the Ricci curvature of complex Hermitian manifolds, J. Geom. Anal. 35 (2025), no. 1, Paper No. 30, 19. MR 4833266, DOI 10.1007/s12220-024-01854-9
- Lei Ni and Fangyang Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018), no. 6, Paper No. 151, 31. MR 3858834, DOI 10.1007/s00526-018-1431-x
- Lei Ni and Fangyang Zheng, Positivity and the Kodaira embedding theorem, Geom. Topol. 26 (2022), no. 6, 2491–2505. MR 4521247, DOI 10.2140/gt.2022.26.2491
- K. Tang, Quasi-positive curvature and vanishing theorems, arXiv:2405.03895, 2024.
- Xiaokui Yang, RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math. 6 (2018), no. 2, 183–212. MR 3811235, DOI 10.4310/CJM.2018.v6.n2.a2
- X. Yang, Compact Kähler manifolds with quasi-positive second Chern-Ricci curvature, Preprint, arXiv:2006.13884, 2020.
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 669–706. MR 645762
- S. Zhang and X. Zhang, Compact Kähler manifolds with quasi-positive holomorphic sectional curvature, arXiv:2311.18779v4, 2023.
Bibliographic Information
- Yiyang Du
- Affiliation: School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
- ORCID: 0009-0005-3692-6192
- Email: 18843409130@163.com
- Yanyan Niu
- Affiliation: School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
- Email: yyniu@cnu.edu.cn
- Received by editor(s): October 23, 2024
- Published electronically: March 26, 2025
- Additional Notes: The second author was supported by National Natural Science Foundation of China #11821101.
The second author is the corresponding author - Communicated by: Jiaping Wang
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2609-2620
- MSC (2020): Primary 53C55; Secondary 32Q15
- DOI: https://doi.org/10.1090/proc/17187
- MathSciNet review: 4892631