On problems of the divergence of logarithmic means of Fourier series
HTML articles powered by AMS MathViewer
- by Ushangi Goginava and Farrukh Mukhamedov;
- Proc. Amer. Math. Soc. 153 (2025), 2555-2564
- DOI: https://doi.org/10.1090/proc/17191
- Published electronically: March 24, 2025
- HTML | PDF | Request permission
Abstract:
The present study provides an answer to certain long-standing divergence problems involving the logarithmic means of Fourier series in the context of general orthonormal systems.References
- Anas Ahmad Abu Joudeh and György Gát, Convergence of Cesáro means with varying parameters of Walsh-Fourier series, Miskolc Math. Notes 19 (2018), no. 1, 303–317. MR 3895589, DOI 10.18514/mmn.2018.2347
- T. Akhobadze, On the convergence of generalized Cesàro means of trigonometric Fourier series. I, Acta Math. Hungar. 115 (2007), no. 1-2, 59–78. MR 2316617, DOI 10.1007/s10474-007-5214-7
- T. Akhobadze and Sh. Zviadadze, A note on the generalized Cesáro means of trigonometric Fourier series, Izv. Nats. Akad. Nauk Armenii Mat. 54 (2019), no. 5, 3–10; English transl., J. Contemp. Math. Anal. 54 (2019), no. 5, 263–267. MR 4026067
- S. V. Bočkarev, A Fourier series that diverges on a set of positive measure for an arbitrary bounded orthonormal system, Mat. Sb. (N.S.) 98(140) (1975), no. 3(11), 436–449, 496 (Russian). MR 390634
- S. V. Bochkarev, Everywhere divergent Fourier series in the Walsh system and in multiplicative systems, Uspekhi Mat. Nauk 59 (2004), no. 1(355), 103–124 (Russian, with Russian summary); English transl., Russian Math. Surveys 59 (2004), no. 1, 103–124. MR 2069165, DOI 10.1070/RM2004v059n01ABEH000703
- V. M. Bugadze, Divergence of Fourier-Walsh series of bounded functions on sets of measure zero, Mat. Sb. 185 (1994), no. 7, 119–127 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 2, 365–372. MR 1300136, DOI 10.1070/SM1995v082n02ABEH003570
- V. V. Buzdalin, Unboundedly diverging trigonometric Fourier series of continuous functions, Mat. Zametki 7 (1970), 7–18 (Russian). MR 262757
- Francesco Di Plinio, Lacunary Fourier and Walsh-Fourier series near $L^1$, Collect. Math. 65 (2014), no. 2, 219–232. MR 3189278, DOI 10.1007/s13348-013-0094-3
- Yen Q. Do and Michael T. Lacey, On the convergence of lacunacy Walsh-Fourier series, Bull. Lond. Math. Soc. 44 (2012), no. 2, 241–254. MR 2914604, DOI 10.1112/blms/bdr088
- György Gát, Almost everywhere convergence of Fejér and logarithmic means of subsequences of partial sums of the Walsh-Fourier series of integrable functions, J. Approx. Theory 162 (2010), no. 4, 687–708. MR 2606641, DOI 10.1016/j.jat.2009.07.011
- György Gát, Cesàro means of subsequences of partial sums of trigonometric Fourier series, Constr. Approx. 49 (2019), no. 1, 59–101. MR 3895764, DOI 10.1007/s00365-018-9438-2
- György Gát, Almost everywhere divergence of Cesàro means of subsequences of partial sums of trigonometric Fourier series, Math. Ann. 389 (2024), no. 4, 4199–4231. MR 4768723, DOI 10.1007/s00208-023-02746-z
- G. Gát and U. Goginava, Uniform and $L$-convergence of logarithmic means of Walsh-Fourier series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 2, 497–506. MR 2214371, DOI 10.1007/s10114-005-0648-8
- György Gát and Ushangi Goginava, On the divergence of Nörlund logarithmic means of Walsh-Fourier series, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 6, 903–916. MR 2511534, DOI 10.1007/s10114-009-7013-2
- U. Goginava, On the divergence of Walsh-Fejér means of bounded functions on sets of measure zero, Acta Math. Hungar. 121 (2008), no. 4, 359–369. MR 2461440, DOI 10.1007/s10474-008-7219-2
- Ushangi Goginava and Giorgi Oniani, On the divergence of subsequences of partial Walsh-Fourier sums, J. Math. Anal. Appl. 497 (2021), no. 2, Paper No. 124900, 13. MR 4197287, DOI 10.1016/j.jmaa.2020.124900
- Richard P. Gosselin, On the divergence of Fourier series, Proc. Amer. Math. Soc. 9 (1958), 278–282. MR 96068, DOI 10.1090/S0002-9939-1958-0096068-0
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 30620
- J.-P. Kahane and Y. Katznelson, Sur les coefficients des séries de Fourier dont les sommes partielles sont positives sur un ensemble, Studia Math. 44 (1972), 555–562 (French). MR 340922, DOI 10.4064/sm-44-6-555-562
- I. B. Kaplan, Cesàro means of variable order, Izv. Vysš. Učebn. Zaved. Matematika 1960 (1960), no. 5(18), 62–73 (Russian). MR 131696
- G. A. Karagulyan, Divergence of general operators on sets of measure zero, Colloq. Math. 121 (2010), no. 1, 113–119. MR 2725706, DOI 10.4064/cm121-1-10
- Jean-Pierre Kahane and Yitzhak Katznelson, Sur les ensembles de divergence des séries trigonométriques, Studia Math. 26 (1966), 305–306 (French). MR 199633, DOI 10.4064/sm-26-3-307-313
- K. S. Kazaryan and P. L. Ul′yanov, On a problem of Alexits with respect to the divergence of orthogonal Fourier series, Dokl. Akad. Nauk SSSR 316 (1991), no. 3, 542–546 (Russian); English transl., Soviet Math. Dokl. 43 (1991), no. 1, 132–136. MR 1100154
- A. Kolmogoroff, Une série de Fourier-Lebesgue divergente presque partout, Fund. Math. 4 (1923), no. 1, 324–328.
- A. Kolmogoroff, Une série de Fourier-Lebesgue divergente partout, CR Acad. ScL Paris 183 (1926).
- S. V. Konyagin, On a subsequence of Fourier-Walsh partial sums, Mat. Zametki 54 (1993), no. 4, 69–75, 158 (Russian, with Russian summary); English transl., Math. Notes 54 (1993), no. 3-4, 1026–1030 (1994). MR 1256607, DOI 10.1007/BF01210421
- S. V. Konyagin, Divergence everywhere of subsequences of partial sums of trigonometric Fourier series, Proc. Steklov Inst. Math. Function Theory, suppl. 2 (2005), S167–S175. MR 2200228
- Sergey V. Konyagin, Almost everywhere convergence and divergence of Fourier series, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1393–1403. MR 2275651
- S. V. Konyagin, Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series, Proc. Steklov Inst. Math. 273 (2011), no. suppl. 1, S99–S106. MR 3545867, DOI 10.1134/S0081543811050105
- Victor Lie, On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences, J. Funct. Anal. 263 (2012), no. 11, 3391–3411. MR 2984070, DOI 10.1016/j.jfa.2012.08.013
- F. Móricz and A. H. Siddiqi, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory 70 (1992), no. 3, 375–389. MR 1178380, DOI 10.1016/0021-9045(92)90067-X
- S. Stechkin, On convergence and divergence of trigonometric series. Uspekhi Mat. Nauk 6 (1951), no. 2, 148–149.
- E. M. Stein, On limits of seqences of operators, Ann. of Math. (2) 74 (1961), 140–170. MR 125392, DOI 10.2307/1970308
- Shakro Tetunashvili, On divergence of Fourier series by some methods of summability, J. Funct. Spaces Appl. , posted on (2012), Art. ID 542607, 9. MR 2873712, DOI 10.1155/2012/542607
- V. Totik, On the divergence of Fourier series, Publ. Math. Debrecen 29 (1982), no. 3-4, 251–264. MR 678901, DOI 10.5486/pmd.1982.29.3-4.05
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 236587
Bibliographic Information
- Ushangi Goginava
- Affiliation: Department of Mathematical Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, Abu Dhabi, UAE
- MR Author ID: 638593
- Email: zazagoginava@gmail.com, ugoginava@uaeu.ac.ae
- Farrukh Mukhamedov
- Affiliation: Department of Mathematical Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, Abu Dhabi, UAE
- MR Author ID: 636904
- Email: farrukh.m@uaeu.ac.ae
- Received by editor(s): January 18, 2024
- Received by editor(s) in revised form: November 27, 2024, and December 2, 2024
- Published electronically: March 24, 2025
- Communicated by: Dmitriy Bilyk
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2555-2564
- MSC (2020): Primary 42C10, 40A05, 40A30, 42A24, 42A55
- DOI: https://doi.org/10.1090/proc/17191
- MathSciNet review: 4892627