Equidistribution of graphs of holomorphic correspondences
HTML articles powered by AMS MathViewer
- by Muhan Luo;
- Proc. Amer. Math. Soc. 153 (2025), 2579-2589
- DOI: https://doi.org/10.1090/proc/17198
- Published electronically: March 24, 2025
- HTML | PDF | Request permission
Abstract:
Let $X$ be a compact Riemann surface. Let $f$ be a holomorphic self-correspondence of $X$ with degrees $d_1$ and $d_2$. Assume that $d_1\neq d_2$ or $f$ is non-weakly modular. We show that the graphs of the iterates $f^n$ of $f$ are equidistributed exponentially fast with respect to a positive closed current in $X\times X$.References
- Laurent Clozel and Jean-Pierre Otal, Unique ergodicité des correspondances modulaires, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 205–216 (French, with English and French summaries). MR 1929327
- Laurent Clozel and Emmanuel Ullmo, Correspondances modulaires et mesures invariantes, J. Reine Angew. Math. 558 (2003), 47–83 (French). MR 1979182, DOI 10.1515/crll.2003.042
- Jean-Pierre Demailly, Complex analytic and differential geometry, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012
- Tien-Cuong Dinh, Distribution des préimages et des points périodiques d’une correspondance polynomiale, Bull. Soc. Math. France 133 (2005), no. 3, 363–394 (French, with English and French summaries). MR 2169823, DOI 10.24033/bsmf.2491
- Tien-Cuong Dinh, Equidistribution of periodic points for modular correspondences, J. Geom. Anal. 23 (2013), no. 3, 1189–1195. MR 3078349, DOI 10.1007/s12220-011-9282-0
- Tien-Cuong Dinh, Lucas Kaufmann, and Hao Wu, Dynamics of holomorphic correspondences on Riemann surfaces, Internat. J. Math. 31 (2020), no. 5, 2050036, 21. MR 4104599, DOI 10.1142/S0129167X20500366
- Tien-Cuong Dinh, Lucas Kaufmann, and Hao Wu, Products of random matrices: a dynamical point of view, Pure Appl. Math. Q. 17 (2021), no. 3, 933–969. MR 4278953, DOI 10.4310/PAMQ.2021.v17.n3.a4
- Tien-Cuong Dinh, Lucas Kaufmann, and Hao Wu, Random walks on $\textrm {SL}_2(\Bbb C)$: spectral gap and limit theorems, Probab. Theory Related Fields 186 (2023), no. 3-4, 877–955. MR 4603397, DOI 10.1007/s00440-023-01191-y
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, Equidistribution for meromorphic maps with dominant topological degree, Indiana Univ. Math. J. 64 (2015), no. 6, 1805–1828. MR 3436236, DOI 10.1512/iumj.2015.64.5674
- Tien-Cuong Dinh and Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221–258 (French, with English summary). MR 2208805, DOI 10.4171/CMH/50
- Tien-Cuong Dinh and Nessim Sibony, Equidistribution problems in complex dynamics of higher dimension, Internat. J. Math. 28 (2017), no. 7, 1750057, 31. MR 3667901, DOI 10.1142/S0129167X17500574
- John Erik Fornæss, Dynamics in several complex variables, CBMS Regional Conference Series in Mathematics, vol. 87, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1363948
- V. Matus de la Parra, Equidistribution for matings of quadratic maps with the modular group, Ergodic Theory Dynam. Systems 44 (2024), no. 3, 859–887. MR 4700628, DOI 10.1017/etds.2023.33
- Ngaiming Mok, Local holomorphic isometric embeddings arising from correspondences in the rank-1 case, Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000) Nankai Tracts Math., vol. 5, World Sci. Publ., River Edge, NJ, 2002, pp. 155–165. MR 1945359, DOI 10.1142/9789812777416_{0}007
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- Elias M. Stein and Rami Shakarchi, Fourier analysis, Princeton Lectures in Analysis, vol. 1, Princeton University Press, Princeton, NJ, 2003. An introduction. MR 1970295
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
Bibliographic Information
- Muhan Luo
- Affiliation: Department of Mathematics, National University of Singapore, 10, Lower Kent Ridge Road, Singapore 119076, Singapore
- ORCID: 0009-0006-6492-1695
- Email: e0708207@u.nus.edu
- Received by editor(s): May 29, 2024
- Received by editor(s) in revised form: December 16, 2024
- Published electronically: March 24, 2025
- Communicated by: Filippo Bracci
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2579-2589
- MSC (2020): Primary 37F05, 32U40
- DOI: https://doi.org/10.1090/proc/17198