Consistency and independence phenomena involving cellular-Lindelöf spaces
HTML articles powered by AMS MathViewer
- by Rodrigo Hernández-Gutiérrez and Santi Spadaro;
- Proc. Amer. Math. Soc. 153 (2025), 2701-2711
- DOI: https://doi.org/10.1090/proc/17224
- Published electronically: April 8, 2025
- HTML | PDF | Request permission
Abstract:
The cellular-Lindelöf property is a common generalization of the Lindelöf property and the countable chain condition that was introduced by Bella and Spadaro [Monatsh. Math. 186 (2018), pp. 345–353]. We solve two questions of Alas, Gutiérrez-Domínguez and Wilson [Acta Math. Hungar. 167 (2022), pp 548–560] by constructing consistent examples of a normal almost cellular-Lindelöf space which is neither cellular-Lindelöf nor weakly Lindelöf and a Tychonoff cellular-Lindelöf space of Lindelöf degree $\omega _1$ and uncountable weak Lindelöf degree for closed sets. We also construct a ZFC example of a space for which both the almost cellular-Lindelöf property and normality are undetermined in ZFC.References
- O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65 (1993), no. 2, 165–168. MR 1240163, DOI 10.4064/cm-65-2-165-168
- O. T. Alas, L. E. Gutiérrez-Domínguez, and R. G. Wilson, Compact productivity of Lindelöf-type properties, Acta Math. Hungar. 167 (2022), no. 2, 548–560. MR 4487625, DOI 10.1007/s10474-022-01254-x
- Ofelia T. Alas, Lucia R. Junqueira, Marcelo D. Passos, and Richard G. Wilson, On cellular-compactness and related properties, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 101, 13. MR 4076721, DOI 10.1007/s13398-020-00833-3
- A. V. Arhangel’skii, A theorem on cardinality, Russ. Math. Surv. 34 (1979), 153–154.
- A. V. Arhangel’skii, Topological function spaces, Mathematics and its Applications, Soviet series 78, Kluwer Academic Publishers, Dordrecht, 1992, pp. ix, 205.
- Murray Bell, John Ginsburg, and Grant Woods, Cardinal inequalities for topological spaces involving the weak Lindelof number, Pacific J. Math. 79 (1978), no. 1, 37–45. MR 526665
- Angelo Bella, On cellular-compact and related spaces, Topology Appl. 281 (2020), 107203, 6. MR 4174603, DOI 10.1016/j.topol.2020.107203
- Angelo Bella and Santi Spadaro, On the cardinality of almost discretely Lindelöf spaces, Monatsh. Math. 186 (2018), no. 2, 345–353. MR 3808659, DOI 10.1007/s00605-017-1112-4
- Angelo Bella and Santi Spadaro, Cardinal invariants of cellular-Lindelöf spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2805–2811. MR 3956284, DOI 10.1007/s13398-019-00660-1
- Angelo Bella and Santi Spadaro, A common extension of Arhangel’skĭ’s theorem and the Hajnal-Juhász inequality, Canad. Math. Bull. 63 (2020), no. 1, 197–203. MR 4059816, DOI 10.4153/s0008439519000420
- Angelo Bella and Santi Spadaro, Strongly discrete subsets with Lindelöf closures, Topology Proc. 59 (2022), 89–98. MR 4216107
- Alan Dow and R. M. Stephenson Jr., Productivity of cellular-Lindelöf spaces, Topology Appl. 290 (2021), Paper No. 107606, 15. MR 4199849, DOI 10.1016/j.topol.2021.107606
- Vera Fischer, Diana Carolina Montoya, Jonathan Schilhan, and Dániel T. Soukup, Towers and gaps at uncountable cardinals, Fund. Math. 257 (2022), no. 2, 141–166. MR 4391475, DOI 10.4064/fm109-9-2021
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, RI, 1964. MR 170323
- István Juhász, Cardinal functions in topology—ten years later, 2nd ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980. MR 576927
- I. Juhász, L. Soukup, and Z. Szentmiklóssy, On cellular-compact spaces, Acta Math. Hungar. 162 (2020), no. 2, 549–556. MR 4173314, DOI 10.1007/s10474-020-01035-4
- M. Malliaris and S. Shelah, Cofinality spectrum theorems in model theory, set theory, and general topology, J. Amer. Math. Soc. 29 (2016), no. 1, 237–297. MR 3402699, DOI 10.1090/jams830
- Jonathan Schilhan, Generalised pseudointersections, MLQ Math. Log. Q. 65 (2019), no. 4, 479–489. MR 4057946, DOI 10.1002/malq.201800084
- Sumit Singh, On star-cellular-Lindelöf spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 4, Paper No. 190, 12. MR 4314231, DOI 10.1007/s13398-021-01144-x
- V. V. Tkachuk and R. G. Wilson, Cellular-compact spaces and their applications, Acta Math. Hungar. 159 (2019), no. 2, 674–688. MR 4022157, DOI 10.1007/s10474-019-00968-9
- Boaz Tsaban, Menger’s and Hurewicz’s problems: solutions from “the book” and refinements, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 211–226. MR 2777750, DOI 10.1090/conm/533/10509
- V. V. Uspenskiĭ, Continuous images of Lindelöf topological groups, Dokl. Akad. Nauk SSSR 285 (1985), no. 4, 824–827 (Russian). MR 821360
- Wei-Feng Xuan and Yan-Kui Song, A study of cellular-Lindelöf spaces, Topology Appl. 251 (2019), 1–9. MR 3872897, DOI 10.1016/j.topol.2018.10.008
- Wei-Feng Xuan and Yan-Kui Song, More on cellular-Lindelöf spaces, Topology Appl. 266 (2019), 106861, 12. MR 3997193, DOI 10.1016/j.topol.2019.106861
Bibliographic Information
- Rodrigo Hernández-Gutiérrez
- Affiliation: Departamento de Matemáticas, Universidad Autónoma Metropolitana Campus Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1a Sección, Iztapalapa, 09310, Mexico City, Mexico
- MR Author ID: 877557
- ORCID: 0000-0002-5949-0871
- Email: rod@xanum.uam.mx
- Santi Spadaro
- Affiliation: Dipartimento di Matematica e Informatica, Università degli Studi di Catania, viale Andrea Doria, n. 6, 95125, Catania, Italy
- MR Author ID: 863538
- ORCID: 0000-0001-5880-8799
- Email: santi.spadaro@unict.it
- Received by editor(s): June 14, 2024
- Received by editor(s) in revised form: December 16, 2024
- Published electronically: April 8, 2025
- Additional Notes: Research of the first author was partially supported by a grant of the GNSAGA group of INdAM and the FORDECYT-PRONACES grant 64356/2020 of CONAHCyT. The second author was partially supported by a grant from the GNSAGA group of INdAM and by a grant from the Fondo Finalizzato alla Ricerca di Ateneo (FFR 2024) of the University of Palermo
- Communicated by: Vera Fischer
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2701-2711
- MSC (2020): Primary 54A25, 54D20, 03E17; Secondary 54D15, 54G10, 03E35
- DOI: https://doi.org/10.1090/proc/17224
- MathSciNet review: 4892638