Blowup algebras of $n$-dimensional Ferrers diagrams
HTML articles powered by AMS MathViewer
- by Kuei-Nuan Lin and Yi-Huang Shen;
- Proc. Amer. Math. Soc. 153 (2025), 2269-2282
- DOI: https://doi.org/10.1090/proc/17249
- Published electronically: April 8, 2025
- HTML | PDF | Request permission
Abstract:
We demonstrate that the direct sum of ideals satisfying the strong $\ell$-exchange property is of fiber type. Furthermore, we provide Gröbner bases of the presentation ideals of multi-Rees algebras and the corresponding special fibers, when they are associated with an $n$-dimensional Ferrers diagram that is standardizable. In particular, we show that these blowup algebras are Koszul Cohen–Macaulay normal domains and classify their singularities.References
- Stefan Blum, Subalgebras of bigraded Koszul algebras, J. Algebra 242 (2001), no. 2, 795–809. MR 1848973, DOI 10.1006/jabr.2001.8804
- Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
- Winfried Bruns and Aldo Conca, Linear resolutions of powers and products, Singularities and computer algebra, Springer, Cham, 2017, pp. 47–69. MR 3675721
- Falai Chen, Wenping Wang, and Yang Liu, Computing singular points of plane rational curves, J. Symbolic Comput. 43 (2008), no. 2, 92–117. MR 2357078, DOI 10.1016/j.jsc.2007.10.003
- Aldo Conca, Jürgen Herzog, and Giuseppe Valla, Sagbi bases with applications to blow-up algebras, J. Reine Angew. Math. 474 (1996), 113–138. MR 1390693, DOI 10.1515/crll.1996.474.113
- Alberto Corso and Uwe Nagel, Monomial and toric ideals associated to Ferrers graphs, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1371–1395. MR 2457403, DOI 10.1090/S0002-9947-08-04636-9
- Alberto Corso, Uwe Nagel, Sonja Petrović, and Cornelia Yuen, Blow-up algebras, determinantal ideals, and Dedekind-Mertens-like formulas, Forum Math. 29 (2017), no. 4, 799–830. MR 3669004, DOI 10.1515/forum-2016-0007
- David A. Cox, Kuei-Nuan Lin, and Gabriel Sosa, Multi-Rees algebras and toric dynamical systems, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4605–4616. MR 4011498, DOI 10.1090/proc/14579
- David A. Cox, Applications of polynomial systems, CBMS Regional Conference Series in Mathematics, vol. 134, American Mathematical Society, Providence, RI, [2020] ©2020. With contributions by Carlos D’Andrea, Alicia Dickenstein, Jonathan Hauenstein, Hal Schenck and Jessica Sidman. MR 4284895
- Emanuela De Negri, Toric rings generated by special stable sets of monomials, Math. Nachr. 203 (1999), 31–45. MR 1698638, DOI 10.1002/mana.1999.3212030103
- Michael DiPasquale and Babak Jabbar Nezhad, Koszul multi-Rees algebras of principal $L$-Borel ideals, J. Algebra 581 (2021), 353–385. MR 4256901, DOI 10.1016/j.jalgebra.2021.03.016
- Viviana Ene and Jürgen Herzog, Gröbner bases in commutative algebra, Graduate Studies in Mathematics, vol. 130, American Mathematical Society, Providence, RI, 2012. MR 2850142, DOI 10.1090/gsm/130
- R. Fröberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997) Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337–350. MR 1767430
- Elisa Gorla and Alberto Ravagnani, Subspace codes from Ferrers diagrams, J. Algebra Appl. 16 (2017), no. 7, 1750131, 23. MR 3660414, DOI 10.1142/S0219498817501316
- Jürgen Herzog, Takayuki Hibi, and Marius Vladoiu, Ideals of fiber type and polymatroids, Osaka J. Math. 42 (2005), no. 4, 807–829. MR 2195995
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- Melvin Hochster and Craig Huneke, Tight closure and strong $F$-regularity, Mém. Soc. Math. France (N.S.) 38 (1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044348
- Serkan Hoşten, Amit Khetan, and Bernd Sturmfels, Solving the likelihood equations, Found. Comput. Math. 5 (2005), no. 4, 389–407. MR 2189544, DOI 10.1007/s10208-004-0156-8
- Selvi Kara, Kuei-Nuan Lin, and Gabriel Sosa Castillo, Multi-Rees algebras of strongly stable ideals, Collect. Math. 75 (2024), no. 1, 213–246. MR 4688270, DOI 10.1007/s13348-022-00385-2
- Kuei-Nuan Lin and Claudia Polini, Rees algebras of truncations of complete intersections, J. Algebra 410 (2014), 36–52. MR 3201047, DOI 10.1016/j.jalgebra.2014.03.022
- Kuei-Nuan Lin and Yi-Huang Shen, Koszul blowup algebras associated to three-dimensional Ferrers diagrams, J. Algebra 514 (2018), 219–253. MR 3853064, DOI 10.1016/j.jalgebra.2018.08.013
- Kuei-Nuan Lin and Yi-Huang Shen, Regularity and multiplicity of toric rings of three-dimensional Ferrers diagrams, J. Algebraic Combin. 57 (2023), no. 4, 1073–1101. MR 4588125, DOI 10.1007/s10801-023-01217-7
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
- Wolmer V. Vasconcelos, Arithmetic of blowup algebras, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR 1275840, DOI 10.1017/CBO9780511574726
Bibliographic Information
- Kuei-Nuan Lin
- Affiliation: Department of Mathematics, The Penn State University, McKeesport, Pennsylvania 15132
- MR Author ID: 1046702
- ORCID: 0000-0002-3320-6246
- Email: linkn@psu.edu
- Yi-Huang Shen
- Affiliation: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- MR Author ID: 693637
- ORCID: 0000-0003-2411-7791
- Email: yhshen@ustc.edu.cn
- Received by editor(s): March 7, 2024
- Published electronically: April 8, 2025
- Additional Notes: The second author was partially supported by the “the Fundamental Research Funds for Central Universities” and “the Innovation Program for Quantum Science and Technology” (2021ZD0302902).
- Communicated by: Claudia Polini
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2269-2282
- MSC (2020): Primary 13A30, 13F65, 05E40; Secondary 14M25
- DOI: https://doi.org/10.1090/proc/17249
- MathSciNet review: 4892607