Schatten classes on noncommutative tori: Kernel conditions
HTML articles powered by AMS MathViewer
- by Michael Ruzhansky and Kai Zeng;
- Proc. Amer. Math. Soc. 153 (2025), 2467-2479
- DOI: https://doi.org/10.1090/proc/17253
- Published electronically: April 3, 2025
- HTML | PDF | Request permission
Abstract:
In this note, we give criteria on noncommutative integral kernels ensuring that integral operators on quantum torus belong to Schatten classes. With the engagement of a noncommutative Schwartz’ kernel theorem on the quantum torus, a specific test for Schatten class properties of bounded operators on the quantum torus is established.References
- Zeqian Chen, Quanhua Xu, and Zhi Yin, Harmonic analysis on quantum tori, Comm. Math. Phys. 322 (2013), no. 3, 755–805. MR 3079331, DOI 10.1007/s00220-013-1745-7
- Julio Delgado and Michael Ruzhansky, Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal. 267 (2014), no. 3, 772–798. MR 3212723, DOI 10.1016/j.jfa.2014.04.016
- Julio Delgado and Michael Ruzhansky, Schatten–von Neumann classes of integral operators, J. Math. Pures Appl. (9) 154 (2021), 1–29 (English, with English and French summaries). MR 4312282, DOI 10.1016/j.matpur.2021.08.006
- Adrián Manuel González-Pérez, Marius Junge, and Javier Parcet, Singular integrals in quantum Euclidean spaces, Mem. Amer. Math. Soc. 272 (2021), no. 1334, xiii+90. MR 4320770, DOI 10.1090/memo/1334
- Steven Lord, Fedor Sukochev, and Dmitriy Zanin, Singular traces, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, 2013. Theory and applications. MR 3099777
- Edward McDonald, Fedor Sukochev, and Xiao Xiong, Quantum differentiability on quantum tori, Comm. Math. Phys. 371 (2019), no. 3, 1231–1260. MR 4029831, DOI 10.1007/s00220-019-03384-w
- D. M. O’Brien, A simple test for nuclearity of integral operators on $L_{2}(\textbf {R}^{n})$, J. Austral. Math. Soc. Ser. A 33 (1982), no. 2, 193–196. MR 668441, DOI 10.1017/S1446788700018334
- Gilles Pisier, Non-commutative vector valued $L_p$-spaces and completely $p$-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908
- Gilles Pisier, Similarity problems and completely bounded maps, Second, expanded edition, Lecture Notes in Mathematics, vol. 1618, Springer-Verlag, Berlin, 2001. Includes the solution to “The Halmos problem”. MR 1818047, DOI 10.1007/b55674
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Michael Ruzhansky and Niyaz Tokmagambetov, Nonharmonic analysis of boundary value problems, Int. Math. Res. Not. IMRN 12 (2016), 3548–3615. MR 3544614, DOI 10.1093/imrn/rnv243
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149, DOI 10.1007/BFb0064579
- Xiao Xiong, Quanhua Xu, and Zhi Yin, Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori, Mem. Amer. Math. Soc. 252 (2018), no. 1203, vi+118. MR 3778570, DOI 10.1090/memo/1203
- Q. Xu, Noncommutative $L_p$-spaces and martingale inequalities, Book manuscript, 2007.
Bibliographic Information
- Michael Ruzhansky
- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium; \normalfont and Queen Mary University of London, United Kingdom
- MR Author ID: 611131
- ORCID: 0000-0001-8633-5570
- Email: Michael.Ruzhansky@ugent.be
- Kai Zeng
- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium
- ORCID: 0009-0001-4949-7543
- Email: kai.ZENG@ugent.be
- Received by editor(s): July 22, 2024
- Published electronically: April 3, 2025
- Additional Notes: The authors were supported by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations, the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021). The first author was also supported by EPSRC grant EP/V005529/1 and FWO Senior Research Grant G022821N
- Communicated by: Matthew Kennedy
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2467-2479
- MSC (2020): Primary 46L52, 46L51, 46L87; Secondary 47L25, 43A99
- DOI: https://doi.org/10.1090/proc/17253
- MathSciNet review: 4892620