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ENDOMORPHISMS OF POWER SERIES FIELDS AND RESIDUE
FIELDS OF FARGUES-FONTAINE CURVES

KIRAN S. KEDLAYA

Abstract. Let k be a field. We show that every endomorphism of the completed algebraic
closure of k((t)) which restricts to an automorphism on k is itself an automorphism. As a
corollary, we resolve a question of Fargues and Fontaine by showing that for p a prime and
Cp a completed algebraic closure of Qp, every closed point of the Fargues-Fontaine curve
associated to Cp has residue field Cp. The argument involves a bit of analysis of ramified
covers of closed discs in Berkovich’s nonarchimedean analytic geometry, which may be of
independent interest.

1. Introduction

In this short note, we address the following question.

Question 1.1. Let K be a nonarchimedean field, i.e., a field complete with respect to a
nontrivial real valuation (which we always notate multiplicatively). Is every continuous ho-
momorphism from K to itself which induces automorphisms of residue fields and value groups
necessarily surjective (and hence an automorphism)?

We will view Question 1.1 as a collection of distinct cases indexed by the choice of K.
For example, it is easy to check (Proposition 3.1) that one has an affirmative answer if
K is spherically complete, so in particular if K in discretely valued. On the other hand,
one can construct examples of fields K for which Question 1.1 admits a negative answer
(Example 3.2).

Our main result is an affirmative answer to Question 1.1 in the intermediate case where K
is the completed algebraic closure of a power series field over a prime field. More precisely,
we prove the following result.

Theorem 1.2. Let K be a completed algebraic closure of k((t)) for some field k. Let τ :
K → K be a continuous homomorphism inducing an isomorphism on residue fields, such
that τ(k) ⊆ k. Then τ is an isomorphism.

The condition on τ is vacuous if k is the algebraic closure of a prime field. Otherwise, we do
not get a full affirmative answer to Question 1.1, and considerations similar to Example 3.2
show that the negative answer is sometimes possible.

This theorem was prompted by an application to a foundational question of p-adic Hodge
theory, specifically in the perfectoid correspondence (commonly known as tilting) between
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nonarchimedean fields in mixed and equal characteristics (generalizing the field of norms
correspondence of Fontaine and Wintenberger). A nonarchimedean field K of residue char-
acteristic p is perfectoid if it is not discretely valued and the Frobenius automorphism on
oK/(p) is surjective. Given such a field, let K[ be the inverse limit of K under the p-power
map; one then shows that K[ naturally carries the structure of a perfectoid (and hence
perfect) nonarchimedean field of equal characteristic p and that there is a canonical isomor-
phism between the absolute Galois groups of K and K[ [10, 11, 12]. The functor K 7→ K[

is not fully faithful; for instance, one can construct many algebraic extensions of Qp whose
completions K map to the completed perfect closure of a power series field over Fp (e.g.,
the cyclotomic extension Qp(µp∞) and the Kummer extension Qp(p

1/p∞)). However, Fargues
and Fontaine have asked [6] whether this can happen for a completed algebraic closure of
Qp, and using Theorem 1.2 we are able to rule this out.

Theorem 1.3. Let p be a prime number and let Cp be a completed algebraic closure of Qp.
If K is a perfectoid field of characteristic 0 such that K[ ∼= C[

p (i.e., K[ is the completed
algebraic closure of a power series field over Fp), then K is itself isomorphic (though not
canonically) to Cp.

This result admits the following geometric interpretation. For each perfectoid field K,
Fargues and Fontaine define an associated scheme XK which is a “complete curve” (i.e., a
regular one-dimensional noetherian scheme equipped with a surjection of its Picard group
onto Z) in terms of which p-adic Hodge theory overK can be simply formulated. Theorem 1.3
implies that for K = Cp, the residue fields of the closed points of XK are all isomorphic to
Cp, though not canonically so. However, one does not expect the same result to hold with
Cp replaced by a larger algebraically closed perfectoid field.

Using the Ax-Sen-Tate theorem on invariants of Galois actions on completed algebraic
closures of henselian fields [1], we may formally promote Theorem 1.3 so as to identify those
perfectoid fields which tilt to completed algebraic extensions of power series fields.

Theorem 1.4. Any perfectoid field K for which K[ is the completion of an algebraic exten-
sion of Fp((t)) is itself the completion of an algebraic extension of Qp.

In particular, while (as noted above) the completed perfect closure of Fp((t)) appears as
the tilt of many different completed algebraic extensions of Qp, it cannot additionally occur
as the tilt of a perfectoid field which does not contain a dense subfield algebraic over Qp.

2. Covers of Berkovich discs

As a technical input into the proof of Theorem 1.2, we study the geometry of ramified
covers of a closed unit disc over a nonarchimedean field in the sense of Berkovich [4]. The
resulting statements may be of independent interest.

Hypothesis 2.1. Throughout §2, let K be an algebraically closed nonarchimedean field.
The algebraically closed hypothesis could be relaxed at the expense of some complexity, but
would provide no benefit for the applications in this paper.

Definition 2.2. For A a commutative nonarchimedean Banach ring, let M(A) denote the
Gel’fand spectrum of A in the sense of Berkovich [4, Chapter 1], i.e., the set of bounded
multiplicative seminorms on A equipped with the evaluation topology (the subspace topology
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for the inclusion M(A) ↪→ RA). For each α ∈ M(A), let H(α) be the residue field of α,
obtained by completing Frac(A/ ker(α)) for the induced multiplicative norm.

Definition 2.3. Let K{t} be the Tate algebra over K, i.e., the completion of K[t] for the
Gauss norm. For each z ∈ oK and each ρ ∈ [0, 1], the ρ-Gauss seminorm on K[t − z]
extends to a seminorm αz,ρ ∈ M(K{t}). Following Berkovich [4, (1.4.4)], [3, §1.2], [8,
Proposition 2.2.7], [9, Theorem 2.26], it is customary to classify points ofM(K{t}) into the
following four types.

1. Points of the form αz,0 for some z ∈ oK . For any such point, the map K → K{t} →
H(α) is an isomorphism.

2. Points of the form αz,ρ for some z ∈ oK and some ρ ∈ (0, 1] ∩ |K×|. This includes
the point α0,1, commonly called the Gauss point.

3. Points of the form αz,ρ for some z ∈ oK and some ρ ∈ (0, 1)− |K×|.
4. All other points.

There is a canonical retraction of M(K{t}) onto the Gauss point [9, Theorem 2.5]. We
will need an extension of the construction to integral extensions of K{t}.

Definition 2.4. Let S0 be the integral closure of K{t} in a finite separable extension of its
fraction field. For i a nonnegative integer, define the map di : K{t} → K{t} by the formula

di

(
∞∑
j=0

ajt
j

)
=
∞∑
j=0

(
j + i

i

)
aj+it

j.

In case K is of characteristic zero, we have di = 1
i!
di

dti
, so the unique extension of d1 = d

dt
to

S0 defines an extension of each di to S0.
In case K is of characteristic p > 0, this argument only provides an extension of di for

i < p; to go further, we argue as follows. Let ϕ denote the absolute Frobenius on either
K{t} or S0; we then have a well-defined Cartier operator

C = ϕ−1 ◦ dp−1

on both K{t} and S0. We may use the Cartier operator to see that the natural map

Sp0 ⊗K{tp} K{t} → S0

is bijective, or equivalently that every s ∈ S has a unique representation in the form∑p−1
j=0 ϕ(sj)t

j: namely, we can and must take

sp−1 = C(s), sp−2 = C(t(s− ϕ(sp−1)t
p−1)), . . . .

By induction on j, we see that the natural maps

Sp
j

0 ⊗K{tpj } K{t} → S0

are all isomorphisms; we may thus extend dp
j

to S0 by first extending it to Sp
j

0 via the

following valid formula on K{tpj}:

dp
j

= ϕj ◦ d1 ◦ ϕ−j.
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For general i, we extend di to S0 via the formula

di =
∏
j

(dp
j
)aj

aj!
(i =

∑
ajp

j, aj ∈ {0, . . . , p− 1}).

For K of any characteristic, the operators di commute pairwise and satisfy the Leibniz
rule:

di(xy) =
i∑

j=0

dj(x)di−j(y) (x, y ∈ S0).

We may then argue as in [9, Lemma 2.3, Theorem 2.5] to see that the formula

H(β, ρ)(f) = max
i

{
ρiβ
(
di(f)

)}
(β ∈M(S0), f ∈ S0, ρ ∈ [0, 1])

defines a continuous map H : M(S0) × [0, 1] → M(S0). Note that if S0 = K{t}, then
H(αz,ρ, σ) = αz,max{ρ,σ} [9, Lemma 2.4].

Now let S be the completed integral closure of K{t} in a completed separable closure of
its fraction field (noting that a completed separable closure is also algebraically closed). By
interpolating the maps defined above, we again obtain a continuous map H :M(S)×[0, 1]→
M(S).

The following is an instance of the “nonarchimedean Hadamard three circles theorem”;
compare [7, Proposition 8.2.3(c)].

Lemma 2.5. With notation as in Definition 2.4, for f ∈ S, β ∈ M(S), ρ, σ ∈ (0, 1], and
s ∈ [0, 1], we have

H(β, ρ)(f)sH(β, σ)(f)1−s ≥ H(β, ρsσ1−s)(f).

Proof. By continuity, it suffices to check the claim with S replaced by some S0. We may
reinterpret the claim as the statement that the map r 7→ logH(β, e−r)(f) is convex for
r > 0. Note this map is continuous and piecewise linear, with changes of slopes only at
values where H(β, e−r) lifts a point of M(K{t}) of type 2; it thus suffices to compare
directional derivatives at such points.

Let k be the residue field of K (which is algebraically closed because K is). Viewing the
residue field H(H(β, e−r)) of H(β, e−r) as a nonarchimedean field, it then has its own residue
field, which may be identified with the function field of some curve C over k (see for example
[2, Definition 4.16]). The points of C correspond to valuations on the function field, which
in turn correspond to the local connected components ofM(S0)− {H(β, e−r)} (and to type
5 points of the associated adic space in the sense of Huber; see for example [5, §3.4]). In
particular, there are two distinguished points 0,∞ of C corresponding to the local connected
components containing H(β, e−r−ε), H(β, e−r+ε), respectively, for ε > 0.

Since K is algebraically closed and H(β, e−r) is of type 2, we can choose a nonzero element
λ ∈ K such that H(β, e−r)(λf) = 1. The image of λf in the residue field of H(H(β, e−r))
then corresponds to a rational function g on C with poles only at ∞; the left and right
directional derivatives of logH(β, e−r)(f) are unchanged by replacing f with λf , and thus
must equal ord∞(g) and − ord0(g), respectively. Since

− ord0(g)− ord∞(g) =
∑

P∈C−{0,∞}

ordP (g) ≥ 0,
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we conclude that r 7→ logH(β, e−r)(f) is convex, as desired. �

One standard property of the Berkovich classification is that if α ∈ M(K{t}) is of type
other than 1, then the map K{t} → H(α) is injective; that is, α defines a true norm on
K{t} rather than a seminorm. Using Lemma 2.5, we may extend this fact to the ring S.

Lemma 2.6. With notation as in Definition 2.4, if β ∈M(S) restricts to α ∈M(K{t}) of
type other than 1, then the map S → H(β) is injective.

Proof. Since α is not of type 1, it follows (see for instance [9, Definition 2.10 and The-
orem 2.26]) that there exists ρ ∈ (0, 1] such that H(α, ρ) = α; we must then also have
H(β, ρ) = β. If f ∈ ker(S → H(β)), we may then apply Lemma 2.5 to deduce that
H(β, σ)(f) = 0 for all σ ∈ [ρ, 1), and hence also for σ = 1 by continuity. This forces
f = 0. �

3. Proofs and examples

We now settle the questions raised in the introduction.

Proposition 3.1. Question 1.1 admits an affirmative answer if K is spherically complete.

Proof. Let τ : K → K be a homomorphism as in Question 1.1. Suppose by way of contra-
diction that there exists x ∈ K with x /∈ τ(K). Since K is spherically complete, the set of
possible valuations of x − τ(y) for y ∈ K has a least element. If y realizes this valuation,
then by the matching of value groups, we can find y′ ∈ K such that τ(y′) and x− τ(y) have
the same valuation; by the matching of residue fields, we can further choose y′ such that
(x− τ(y))/τ(y′) maps to 1 in k. But then x− τ(y+ y′) has smaller valuation than x− τ(y),
a contradiction. �

Example 3.2. Let K0 be a nonarchimedean field with nondiscrete valuation v, and choose
a sequence x1, x2, . . . ∈ K×0 whose valuations are positive and form a convergent series. (For
a more concrete example, take K0 to be a completed algebraic closure of C((t)) and take
xn = t2

−n
.) Let K be the completion of K0(t1, t2, . . . ) for the Gauss valuation (i.e., the

valuation of a nonzero polynomial is the maximum valuation of its coefficients); then K
admits a unique valuation-preserving endomorphism τ fixing K0 and taking tn to tn−xntn+1

for each n. We will show that the image of τ does not contain t1, and hence τ is not an
isomorphism.

Suppose to the contrary that there exists y ∈ K with τ(y) = t1. By hypothesis, there exists
some λ ∈ K0 such that v(λ) < v(x1 · · ·xn) for all n. We may then choose y′ ∈ K0(t1, . . . , tn)
for some positive integer n in such a way that v(y − y′) < v(λ). Put y′′ = t1 + x1t2 + · · · +
x1 · · ·xntn+1; then τ(y′′) = t1−x1 · · ·xn+1tn+2, so v(y′′−y) = v(τ(y′′−y)) = v(x1 · · ·xn+1) >
v(λ). Hence v(y′′ − y′) = v(x1 · · ·xn+1), but y′′ − y′ equals x1 · · ·xntn+1 plus an element of
K0(t1, . . . , tn) and so cannot have valuation less than v(x1 · · ·xn). This yields the desired
contradiction.

Proof of Theorem 1.2. The hypotheses are preserved by replacing k with its algebraic closure
inK, so we may assume at once that k is algebraically closed. Since τ induces an isomorphism
of residue fields, it restricts to an automorphism of k. We may thus assume from the outset
that τ fixes k.
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Equip R = kJt, uK with the (t, u)-adic valuation (normalized arbitrarily), which extends
multiplicatively to F = Frac(R). Let CF be a completed algebraic closure of F and let S be
the completed integral closure of R in CF ; we may identify oK with a subring of S and thus
identify τ(t) with an element of S. Let S ′ be the completed integral closure of k((u))[t] in
CF ; then S ⊂ S ′. Let L be the completed algebraic closure of k((u)) within S ′; then S ′ is the
completed integral closure of L{t/u} within a completed algebraic closure of the fraction field
of the latter. Choose a homomorphism S ′ → K mapping oK to itself and taking u to τ(t);
this map defines a point α ∈M(S ′) by restriction of the valuation on K. Since the kernel of
this map contains u− τ(t) and hence is nontrivial, by Lemma 2.6 α must be a point of type
1. In particular, we can define an inclusion of τ(K) into S ′ taking τ(t) to u; this inclusion
induces an isomorphism τ(K) ∼= L; and the type 1 property implies that the composition
τ(K) → L → L{t/u} → S ′ → K, which coincides with the inclusion τ(K) → K, must be
an isomorphism. �

Proof of Theorem 1.3. We use [10, Theorem 1.5.6] as our blanket reference concerning the
perfectoid correspondence. By [10, Example 1.3.5], there is an algebraic extension of Qp

whose completion is perfectoid with tilt isomorphic to the completed perfect closure of
Fp((t)); hence Cp is perfectoid and C[

p is isomorphic to the completed algebraic closure

of Fp((t)). Suppose now that K is a perfectoid field admitting an isomorphism ι1 : K[ → C[
p.

Since K[ is algebraically closed, so is K; in particular, K itself contains a copy of Cp (though
not in a canonical way). By tilting, we obtain a homomorphism ι2 : C[

p → K[. By Theo-
rem 1.2, ι1 ◦ ι2 is an isomorphism, as then is ι2; this implies that the inclusion Cp ⊆ K is an
equality, proving the claim. �

Lemma 3.3. Every complete subfield K of Cp is the completion of an algebraic extension
of Qp (namely, the integral closure of Qp in K).

Proof. Let Qp, K be the algebraic closures of Qp, K in Cp, and put G = Gal(Qp/Qp), H =

Gal(K/K); then G and H both act faithfully on Cp via continuous automorphisms, via

which we may identify H with a closed subgroup of G. Since K contains Qp, Cp is the

completion of K, so the Ax-Sen-Tate theorem [1] implies that CH
p = K. On the other hand,

the field F = QH

p is henselian (being a union of complete fields), so Ax-Sen-Tate also implies

that CH
p is the completion of F . This proves the claim. �

Proof of Theorem 1.4. By Theorem 1.3, a completed algebraic closure of K must be isomor-
phic to Cp. The claim thus follows from Lemma 3.3. �
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