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IDENTIFICATION OF BESOV SPACES VIA
LITTLEWOOD-PALEY-STEIN TYPE g-FUNCTIONS

AZITA MAYELI

Abstract. We use Littlewood-Paley-Stein type g-functions (also called generalized square
functions) associated to symmetric diffusion semigroups to obtain a characterization of in-
homogeneous abstract Besov spaces on the abstract Hilbert spaces. Then we apply our
results for the abstract Besov spaces defined through the Poisson and Gauss-Weierstrass
semigroups.

1. Introduction

Let {Tt}t≥0 be a symmetric diffusion semigroup on a Hilbert spaceH. (See Section 3 for the
definition.). For 1 ≤ q <∞, α > 0, the inhomogenous abstract Besov space Bα

q := Bα
q (H) is

the space of all functions f ∈ H for which∫ 1

0

(
s−αΩr(s, f)

)q ds

s
<∞.

Here, Ωr(s, f) is the modulus of continuity for r ∈ N with r ≥ α and is defined by

Ωr(s, f) = sup
0<τ≤s

‖ (I − Tτ )r f‖ .

The space Bα
q , 1 ≤ q <∞, is a Banach space with the norm

‖f‖Bαq = ‖f‖+

(∫ 1

0

(
s−αΩr(s, f)

)q ds

s

)1/q

. (1)

We use the standard convention for the definition of the norm when q = ∞. Notice that
the Besov norm is independent of the choice of r due to the monotonicity of the modulus of
continuity Ωr. Therefore, for fixed q and α, the definition of Besov space is independent of
the choice of r.

In our previous paper [22], we proved the norm in (1) can be expressed in terms of “smooth”
and “band-limited” functions using the Littlewood-Paley decomposition. In this paper we
show this norm is also equivalent to a norm which can be expressed in terms of Littlewood-
Paley-Stein type g-functions as we will explain.
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IDENTIFICATION OF BESOV SPACES VIA LITTLEWOOD-PALEY-STEIN TYPE g-FUNCTIONS 2

For any given m ∈ N, 1 ≤ q < ∞, β ∈ R and a diffusion semigroup {Tt}t≥0 on a Hilbert
spaceH, we denote a bounded map fromH toH by Gm,q,β and call it a Littlewood-Paley-Stein
type g-function if the following property holds:

‖Gm,q,β(f)‖q �
∫ ∞
0

t(m−β)q
∥∥∥∥ ∂m∂tmTtf

∥∥∥∥q dt

t
. (2)

For q =∞ we use the standard convention.

The functions Gm,q,β can be interpreted as a generalized version of g-functions or square
functions in abstract form. In the classical Littlewood-Paley theory, various g-functions have
played a central role. Typical examples are

gk(f)(x) =

(∫ ∞
0

|tk
∂k

∂tk
Ttf(x)|2dt

t

)1/2

(3)

and

gk(f)(x) =

(∫ ∞
0

|(tA)k
∂k

∂tk
Ttf(x)|2dt

t

)1/2

, (4)

where f ∈ Lp, A is the infinitesimal operator of the semigroup and k ∈ N. (Note, for p = 2,
if we take the L2-norm of (3), we arrive at 2) with q = 2, β = 0 and m = k. Therefore,
our definition of a Littlewood-Paley-Stein type g-function on an abstract Hilbert space as a
generalized version of a g-function makes intuitive sense.)

The g-functions for the generators of semigroups grew out of classical harmonic analysis
and the Littlewood-Paley theory. They were first developed in E. M. Stein’s classical book
[27]. Also see the monograph [13] for when k = 1 and [23] for any k ∈ N. As it has been
shown in [13], the g-functions associated to the Possion semigroup can be applied to deter-
mine the bounded solutions of a Dirichlet problem on Rn×R+ with bounded boundary value
function. Note in his work [23], the author proves the Lp-boundedness of g-functions. These
functions here are associated to (tA)sTt, where s > 0 and A is the infinitesimal operator for
the semigroup {Tt}t≥0. Another principal motivation for introducing the g-functions is to
provide new equivalent norms for the spaces Lp, which make the boundedness properties of
various operators derived from the semigroup Tt more transparent. For further applications
of this form, for example in unconditionally martingale difference spaces, we refer the reader
to [20], where H = Rn, and β = 0.

The main result of this paper, which characterizes the inhomogenous abstract Besov spaces
in terms of the Littelwood-Paley-Stein type g-functions, reads as follows.

Theorem 1.1. Let {Tt}t≥0 be a symmetric diffusion semigroup. Then for 1 < q < ∞,
α > 1/2, and m ∈ N with m > 2α, there is β := β(α) ∈ R such that

‖f‖Bαq � ‖f‖+ ‖Gm,q,β(f)‖, (5)

or equivalently,
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IDENTIFICATION OF BESOV SPACES VIA LITTLEWOOD-PALEY-STEIN TYPE g-FUNCTIONS 3

‖f‖Bαq � ‖f‖+

(∫ ∞
0

t(m−β)q
∥∥∥∥ ∂m∂tmTtf

∥∥∥∥q dt

t

)1/q

(6)

with m > β. The result holds for q =∞ with the modification of the definition.

The definition of Besov spaces in terms of semigroups and modulus of continuity for ab-
stract Hilbert spaces was introduced, for example, by Lion ([21]). There is a large amount of
work in the study of Besov spaces and their characterizations in terms of Littlewood-Paley
g-functions for when H in Bα

q (H) is replaced by Lp(X) space. For example, see [18, 3, 28]

for a characterization of Bα
q (Lp) in terms of the Weierstrass or heat semigroup Tt = e−Lt

(convolution with the heat kernel) associated to a self-adjoint positive definite operator L
on L2.

The organization of this paper is as follows: After some historical comments in Section
2, in Section 3 we introduce some notations and definitions, including a short description
of our previous results in [22]. In Section 4 we prove few key lemmas and the main result
in Theorem 1.1. Finally we apply our results to illustrate Littlewood-Paley-Stein type g-
functions associated to the Poisson and Gauss-Weierstrass semigroups.

2. Historical comments on Besov spaces

In the classical setting, Besov spaces Bα
q (Lp) are the set of all functions in Lp with smooth-

ness degree α where their (quasi)norm is controlled by q. These spaces appear in many
subfields of analysis and applied mathematics and have two types. The definition of one
type uses the Fourier transform (for example see [24, 29]), while the other uses the modulus
of continuity or smoothness. The spaces defined by smoothness are more practical in many
areas of applied analysis, such as in approximation theory and the decomposition of signals
([7, 8, 6]).

For application purposes, it is natural to decompose a Besov function into simple building
blocks and as a result to reduce the study of functions to the study of only the elements in
the decomposition. Wavelet and frame theory have played a key role to achieve this goal.
In the classical level, this kind of decomposition in terms of “smooth wavelets” using spec-
tral theoretic approach was proved in [12]. A unified characterizations of Besov spaces in
terms of atomic decomposition using a group representation theoretic approach was given
by Feichtinger and Gröchenig ([9]). New results in this direction in the context of Lie groups
and homogeneous manifolds were recently published in [4, 5, 10, 11], and [14]-[17]. For
the classification of Besov spaces on compact Riemannian manifolds using continuous and
time-frequency localized wavelets with higher vanishing moments we invite the reader to see
[15, 16]. For other equivalent definitions of these spaces in terms of abstract wavelets and as
interpolation spaces between Hilbert spaces and Sobolev spaces, for example, see the papers
[19, 29].

As we mentioned earlier, in this paper we present a description of Bα
q (H) in term of g-

functions of Littlewood-Paley-Stein type. While the idea behind such an identification is
simple, the proofs are very technical and the main difficulties arise when we replace L2 by
any Hilbert space H.
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3. Preliminaries and Definitions

Let H be a Hilbert space and {Tt}t>0 be a semigroup on H. We set T0 = I. For any f ∈ H,
all Ttf belong to H and limt→0+ Ttf = f ([26]). We say {Tt}t≥0 is symmetric diffusion if it
satisfies the following conditions.

(1) Tt are contractions on H, i.e., ‖Ttf‖ ≤ ‖f‖ for all f ∈ H.
(2) Tt are symmetric, i.e., each Tt is self-adjoint on H.
(3) Tt are positivity preserving, i.e., Ttf ≥ 0 if f ≥ 0.

Symmetric diffusion semigroups occur often in analysis. For examples of this type see [27].

Let A be the infinitesimal generator of the semigroup {Tt}t≥0 with domain D(A). By the
definition of Besov spaces, the following inclusions hold ([2]):

D(A) ⊆ Bα
q ⊆ H.

A is a densely defined closed linear operator on H such that

lim
t→0+

∥∥∥∥Ttf − ft
− Af

∥∥∥∥ = 0, ∀ f ∈ H. (7)

By the functional calculus, Ttf = etAf for all f ∈ H and A has a representation

A =

∫ ∞
0

λdµλ , (8)

where dµλ is a projection valued measure ([25]). This implies that for any f ∈ D(A) and
g ∈ H

〈Af, g〉 =

∫ ∞
0

λ d(µλf, g). (9)

The inner product induces an equivalent definition for the domain of A given by

D(A) =

{
f ∈ H : ‖Af‖2 :=

∫ ∞
0

λ2d(µλf, f) <∞
}
.

By the density, the inner product (9) also holds for all f ∈ H. As a result of (7) and (8),
the operator Tt has a spectral decomposition

Tt =

∫ ∞
0

e−λtdµλ, t > 0.

Thus

∂m

∂tm
Tt = (−1)m

∫ ∞
0

λme−λtdµλ , ∀ m ∈ N.

We say f ∈ H is a Paley-Wiener or bandlimited function with respect to the operator A
and the projection valued measure µλ if d(µλf, f) is supported in the interval [a, b], 0 < a <
b <∞, i.e.,

〈Af, f〉 =

∫ b

a

λd(µλf, f).

We denote the space of such functions by PW[a,b](A) and call it Paley-Wiener space. (For
an equivalent definition of these spaces using the so-called functional form of the spectral
theorem see, for example, [1].) A vector f in H is smooth if it belongs to D(Ak), ∀ k ∈ N. It

Mar 14 2016 13:50:58 EDT
Version 2 - Submitted to PROC

AnalysisThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



IDENTIFICATION OF BESOV SPACES VIA LITTLEWOOD-PALEY-STEIN TYPE g-FUNCTIONS 5

is straightforward that PW[a,b](A) ⊆ ∩k∈ND(Ak), so every vector in the Paley-Wiener space
is smooth.

Let {ψj}j≥0 be a sequence of bounded real-valued functions on [0,∞) with supp(ψ̂j) ⊆
[2j−1, 2j+1]. Assume that the following resolution of identity (a.k.a. a discrete version of
Calderón decomposition) holds:

∞∑
j=0

ψ̂j(λ)2 = 1. (10)

For any f ∈ H and j ≥ 0, define fj := ψ̂j(A)f . Therefore by the resolution of identity and
the functional calculus:

f =
∞∑
j=0

ψ̂j(A)fj . (11)

Since ψ̂j(A)f ∈ ∩k∈ND(Ak), the functions fj are band-limited and smooth. Therefore (11)
represents a decomposition of f in terms of band-limited and smooth functions. In [22] we
applied (11) to prove that for α > 1/2 and 1 < q ≤ ∞

‖f‖Bαq � ‖f‖+

(
∞∑
j=0

(
2jα‖ψ̂j(A)f‖

)q)1/q

, ∀ f ∈ H, (12)

provided that both sides are finite. As usual, we use the standard modifications for q =∞.
We will use the decomposition (11) to prove the main result in Theorem 1.1 in this paper.

Notation: By ‖ ‖op we shall mean the operator norm, and we will use � (�) when the
inequality ≤ (≥) holds up to some uniform constant. Throughout the paper, the equivalence
� indicates � and �. By the Besov space (norm) we shall mean the abstract inhomogeneous
Besov space (norm).

4. Proof of Theorem 1.1

We need some key lemmas here before we prove our main result. The first one follows.

Lemma 4.1. For any j ≥ 0, 1 ≤ p <∞ and k,m ∈ N

∫ ∞
0

tpk
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

dt

t
� 2−jp(k−m) . (13)

Proof. By the functional calculus we have

∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥
op

= sup
λ>0

∣∣∣(−λ)me−λtψ̂j(λ)
∣∣∣ = sup

2j−1≤λ≤2j+1

|(−λ)me−λtψ̂j(λ)| ≤ c1 2mje−2
j−1t.

By applying this in (13):
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∫ ∞
0

tpk
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

dt

t
� 2jmp

∫ ∞
0

tpke−2
j−1ptdt

t
= c2−jp(k−m) .

Here, the constants c1 and c are independent of j and t. This completes the proof of the
lemma. �

Lemma 4.2. Let Mand m be positive integers such that M > 2m. Let β ∈ R. Then the
operator K defined on H by

Kf =

∫ ∞
0

tM−β
(
∂mTt

∂tm

)2

f
dt

t

is bounded and for 1 < q ≤ ∞
‖Kf‖ � ‖Gm,q,β(f)‖.

Proof. By the partition of unity in (10), for any f ∈ H we have

Kf =
∑
j≥0

ψ̂2
j (A)Kf =

∑
j≥0

ψ̂j(A)Kfj, (14)

where fj = ψ̂j(A)f . Notice that above we used the fact that K commutes with ψ̂j(A). We
continue as follows: First let 1 < q <∞. Then

‖Kfj‖ ≤
∫ ∞
0

tM−β

∥∥∥∥∥
(
∂mTt

∂tm

)2

ψ̂j(A)f

∥∥∥∥∥ dtt
≤
∫ ∞
0

tM−β
∥∥∥∥∂mTt∂tm

f

∥∥∥∥ ∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥
op

dt

t
(15)

≤
(∫ ∞

0

t(M−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt
)1/q

(∫ ∞
0

t(M−m)p

∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥p
op

dt

t

)1/p

(16)

� ‖Gm,q,β(f)‖

(∫ ∞
0

t(M−m)p

∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥p
op

dt

t

)1/p

(17)

with
1

p
+

1

q
= 1. To pass from (15) to (16) we used Hölder’s inequality. The inequality

(17) holds by the definition of Littlewood-Paley-Stein type g-functions. By Lemma 4.1, for
k = M −m we can write

∫ ∞
0

t(M−m)p

∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥p
op

dt

t
� 2−j(M−2m)p, (18)

where the constant in the inequality is independent of j. By applying this estimation for
(17) we arrive at

‖Kfj‖ � 2−j(M−2m)‖Gm,q,β(f)‖. (19)

We will use these estimations for Kfj in (14) to complete the proof as follows.
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‖Kf‖ = ‖
∑
j≥0

ψ̂2
j (A)Kf‖

≤
∑
j

‖Kfj‖‖ψ̂j(A)‖op. (20)

Due to (10) we have ‖ψ̂j(A)‖op ≤ 1. Therefore, with (19)

(20) � ‖Gm,q,β(f)‖
∑
j≥0

2−j(M−2m). (21)

With the assumption M > 2m, the sum is finite. Thus

‖Kf‖ � ‖Gm,q,β‖, (22)

as desired. For q =∞, we use the standard convention for the definition of the norm. �

Lemma 4.3. Let m, j be as in the above and t, s > 0. Then〈(
∂mTt

∂tm

)2

fj,

(
∂mTs

∂sm

)2

fj

〉
≥ 24m(j−1)e−2

j+2(t+s)‖fj‖2.

Proof. By the spectral theory and the assumption on the support of ψ̂j we have〈(
∂mTt

∂tm

)2

fj,

(
∂mTs

∂sm

)2

fj

〉
=

〈∫
λ>0

λ2me−2tλdµλfj,

∫
w>0

w2me−2swdµwfj

〉
=

〈∫
λ>0

λ2me−2tλψ̂j(λ)dµλf,

∫
w>0

w2me−2swψ̂j(w)dµwf

〉
=

〈∫ 2j+1

λ=2j−1

λ2me−2tλψ̂j(λ)dµλf,

∫ 2j+1

w=2j−1

w2me−2swψ̂j(w)dµwf

〉

=

∫ 2j+1

λ=2j−1

λ2me−2tλ d

(∫ 2j+1

w=2j−1

w2me−2swd〈µλfj, µwfj〉

)

≥ 24m(j−1)e−2
j+2(t+s)

∫ 2j+1

λ=2j−1

d

(∫ 2j+1

w=2j−1

d〈µλfj, µwfj〉

)
. (23)

Next we aim to show that the integral on the right is ‖fj‖2: Notice by the decomposition
(8) and the spectral theory we can write

ψ̂j(A)f =

∫ ∞
λ=0

ψ̂j(λ)dµλf =

∫ 2j+1

λ=2j−1

ψ̂j(λ)dµλf =

∫ 2j+1

λ=2j−1

dµλfj ∀ f ∈ H. (24)

Therefore, for any g ∈ H

〈ψ̂j(A)f, g〉 =

∫ 2j+1

λ=2j−1

d〈µλfj, g〉.

Take g = fj = ψ̂j(A)f . The preceding equation with the decomposition (24) implies that

Mar 14 2016 13:50:58 EDT
Version 2 - Submitted to PROC

AnalysisThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



IDENTIFICATION OF BESOV SPACES VIA LITTLEWOOD-PALEY-STEIN TYPE g-FUNCTIONS 8

∫ 2j+1

λ=2j−1

d

(∫ 2j+1

w=2j−1

d〈µλfj, µwfj〉

)
= ‖fj‖2. (25)

With interfering (25) in (23), the proof holds:〈(
∂mTt

∂tm

)2

fj,

(
∂mTs

∂sm

)2

fj

〉
≥ 24m(j−1)e−2

j+2(t+s)‖fj‖2.

�

Lemma 4.4. For M > 2m, M > 2qα− β and f ∈ H

‖fj‖ � 2−j(4m−M+β)/2‖Kfj‖, (26)

where fj = ψ̂(A)f , j ≥ 0, and K is the operator defined in Lemma 4.2.

Proof. By the definition of the operator K we have

‖Kfj‖2 =

∫ ∞
t=0

∫ ∞
s=0

(ts)M−β

〈(
∂mTt

∂tm

)2

fj,

(
∂mTs

∂sm

)2

fj

〉
dt

t

ds

s
. (27)

Then (26) is an immediate result of Lemma 4.3 and the following calculations.

‖Kfj‖2 ≥
∫ ∞
t=0

∫ ∞
s=0

(ts)M−β24m(j−1)e−2
j+2(t+s)‖fj‖2

dt

t

ds

s

= 24m(j−1)‖fj‖2
∫ ∞
t=0

∫ ∞
s=0

(ts)M−βe−2
j+2(t+s)dt

t

ds

s

= 24m(j−1)‖fj‖2
(∫ ∞

t=0

tM−βe−2
j+2tdt

t

)2

= 24m(j−1)2−(j+2)(M−β)‖fj‖2
(∫ ∞

t=0

tM−βe−t
dt

t

)2

= c 2j(4m−M+β)‖fj‖2,

where c = 2−2(2m+M−β). This completes the proof of the lemma.
�

Proof of Theorem 1.1 . First we show that for 1 < q <∞

‖f‖Bqα � ‖f‖+

(∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

fj

∥∥∥∥q dtt
)1/q

.

As a result of Lemma 4.4 and the inequality (19) we have

2j(4m−M+β)/2‖fj‖ � ‖Kfj‖ � 2−j(M−2m)

(∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt
)1/q

.
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Equivalently,

2jαq‖fj‖q � 2−j/2(M+β−2αq)
∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt .
By summing over j and the assumptions on M and α, we arrive to the following inequality:

∑
j≥0

(
2αj‖fj‖

)q � ∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt .
Therefore

‖f‖Bqα � ‖f‖+

(∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt
)1/q

. (28)

We show that the converse of (28) is also true. By the decomposition (10) and an applica-
tion of Hölder’s inequality for q, p = q

q−1 , we have∥∥∥∥∂mTt∂tm
f

∥∥∥∥ ≤∑
j≥0

∥∥∥∥∂mTt∂tm
ψ̂j(A)fj

∥∥∥∥ (29)

≤
∑
j≥0

∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥
op

‖fj‖

≤

(∑
j≥0

2jqα ‖fj‖q
)1/q(∑

j≥0

2−jpα
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

)1/p

= ‖f‖Bαq

(∑
j≥0

2−jpα
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

)1/p

Consequently,∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt ≤ ‖f‖qBαq
∫ ∞
0

t(m−β)q

(∑
j≥0

2−jpα
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

)q−1
dt

t
. (30)

In the rest, we show that the integral on the right hand side of (30) is finite and independent
of j. We shall do this as follows. By the functional calculus∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥
op

= t−m sup
λ
|(λt)me−λtψ̂j(λ)|.

Recall that |ψ̂j(λ)| ≤ 1 for all λ in the support of ψ̂j. This, along with the decay property
of e−x, gives us the following two estimations:∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥
op

� t−m, (31)
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and ∥∥∥∥∂mTt∂tm
ψ̂j(A)

∥∥∥∥
op

� 2m(j+1)e−2
j−1t. (32)

Let ε > 0. Take β ∈ R such that qβ+1 > 0. Then by applying (31) in (30), for the integral
over (ε,∞) the following holds:∫ ∞

ε

t(m−β)q

(∑
j≥0

2−jpα
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

)q−1
dt

t
≤
∫ ∞
ε

t(m−β)q

(∑
j≥0

2−jpαt−mp

)q−1
dt

t

=

(∑
j≥0

2−jpα

)q−1 ∫ ∞
ε

t(m−β)qt−mq
dt

t

=

(∑
j≥0

2−jpα

)q−1 ∫ ∞
ε

t−qβ
dt

t
<∞. (33)

To prove that the integral on the left is also finite on (0, ε), we proceed as follows. Pick a
such that 0 < a ≤ m− 1. Then for any λ > 1/2 we have

tme−λt ≤ (1 + (λt−1)a)−1 =
ta

λa + ta
, 0 < t < ε. (34)

Using the inequality (31) once again, we prove that the integral on the right side of (30) is
finite on (0, ε): Take a sufficiently large such that a > β and α + a > m. Then

∫ ε

0

t(m−β)q

(∑
j≥0

2−jpα
∥∥∥∥∂mTt∂tm

ψ̂j(A)

∥∥∥∥p
op

)q−1
dt

t
(35)

�
∫ ε

0

t−βq

(∑
j≥0

2−jpα

(
sup

2j−1≤λ≤2j+1

sm(1 + (st−1)a)−1

)p)q−1
dt

t
(36)

�
∫ ε

0

t−βq

(∑
j≥0

2−jpα2jmp(2jt−1)−ap

)q−1
dt

t

=

(∑
j≥0

2−jp(α+a−m)

)∫ ε

0

t(a−β)q
dt

t
<∞. (37)

Notice that to pass from (35) to (36) we used the estimations (32) and (34), respectively.
Consequently, (37) with (33) implies that the integral on right had side of (30) is finite. Thus

‖f‖+

(∫ ∞
0

t(m−β)q
∥∥∥∥∂mTt∂tm

f

∥∥∥∥q dtt
)1/q

� ‖f‖Bαq ,

and we have completed the proof for Theorem 1.1. �
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5. applications

We conclude this paper by illustrating our results in two examples.

Example 5.1. The Cauchy-Poisson semigroup {Pt}t≥0 on L2(Rn), with the convention P0 :=
I, is given by

Ptf(x) =

∫
Rn
f(y)pt(x− y)dy

with the Poisson kernel

pt(x) = cn
t

(|x|2 + t2)
n+1
2

, (x, t) ∈ Rn × (0,∞).

The constant cn is chosen such that
∫
pt(x)dx = 1. The Poisson semigroup illustrates a

notion of convolution semigroup and Ptf = f ∗ pt. Let φ1 denote the first derivative of the
Poisson kernel for the upper half space at time t = 1:

φ1(x) =
∂

∂t
pt(x)|t=1 .

The function φ1 is integrable with mean value zero, i.e.,
∫
φ1(x)dx = 0. Similarly, let

φm(x) :=
∂m

∂tm
pt(x)|t=1 m ≥ 2.

It is easy to show that
∂m

∂mt
Ptf = f ∗ φmt where φmt (x) = t−nφm(x

t
), t > 0. {Pt}t≥0 is a

symmetric diffusion semigroup (see [27]), and

‖f‖Bαq � ‖f‖+

(∫ ∞
0

t(m−α)q ‖f ∗ φmt ‖
q dt

t

)1/q

.

Example 5.2. Let H = L2(Rn). The heat semigroup {Tt}t≥0 is defined by the Gauss-
Weierstrass formula

Ttf(x) =

∫
Rn
f(y)ht(x− y)dy, x ∈ Rn, t > 0 (38)

where ht is the heat kernel

ht(x) = cnt
−n/2e

−|x|2
4t , t > 0.

We set T0 := I. Here, cn =
1

(4π)n/2
and

∫
Rn ht(x)dx = 1. By the definition, Tt, t > 0, is a

convolution operator and Ttf = f ∗ ht. By Young’s inequality ‖Ttf‖ ≤ ‖f‖, and it is easy
to verify that {Tt}t≥0 is a diffusion semigroup. (The semigroup axiom Tt+s = TtTs can be
obtained by using the Fourier transform.) For the heat semigroup {Tt}t≥0, the Besov norm
‖f‖Bαq is thus equivalent to

‖f‖+

(∫ ∞
0

t(m−α/2)q
∥∥∥∥f ∗ ∂m∂tmht

∥∥∥∥q dtt
)1/q

for any m with 2m > α and β = α/2.
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9. H. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic

decompositions, J. Funct. Anal. 86(1989), no. 2, 307–340. 3
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