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Maximizing dimension for Bernoulli measures
and the Gauss map

Mark Pollicott∗

Abstract

We give a short proof that there exists a countable state Bernoulli measure maxi-
mizing the dimension of their images under the continued fraction expansion.

1 Introduction

Let T : [0, 1)→ [0, 1) be the usual Gauss map defined by

T (x) =

{
1
x

(mod 1) if 0 < x < 1

0 if x = 0.

For each infinite probability vector in

P =

{
p = (pk)

∞
k=1 ∈ [0, 1]N :

∞∑
k=1

pk = 1

}

we can associate a natural T -invariant measure µp := νpπ
−1, where νp is the usual countable

state Bernoulli measure on NZ and π : NN → [0, 1) is the usual continued fraction expansion
π(xn) = [x1, x2, x3, · · · ]. We can define the dimension of the measure µp by

d(µp) := inf
{

dimH(B) : B is a Borel set with µp(B) = 1
}

where dimH(B) denotes the Hausdorff dimension of B (see [3], p. 229). We define the
entropy and Lyapunov exponents of the measure µp by

h(µp) = −
∞∑
k=1

pk log pk and λ(µp) =

∫
log |T ′|dµp(x),

∗The author was supported by ERC grant “Resonances”. The author would like to thank the referee for
his many helpful comments.
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2 PROOF OF THEOREM 1.1

whenever they are finite, and then we can write d(µp) =
h(µp)

λ(µp)
> 0. Kifer, Peres and Weiss

[4] observed that d(µp) is uniformly bounded away from 1 (making use of a thermodynamic

approach of Walters) 1 i.e.,

D := sup
{
d(µp) : p ∈ P

}
< 1. (1.1)

We will give a simple proof of the following result.

Theorem 1.1 (Exact dimensionality). There exists p† ∈ P such that:

1. d(µp†) = D, i.e., p† realises the supremum in (1.1);

2. p†k � k−2D, i.e., ∃c > 1 such that 1
ck2D
≤ p†k ≤ c

k2D
, for k ≥ 1; and

3. µp† is ergodic.

The first part of the theorem answers a question the author was asked by K. Burns. 2 I
posed the question to my graduate student N. Jurga who, in collaboration with my PDRA
S. Baker, gave an elementary proof. Their proof is based on an iterative construction of a
sequence of measures µp

n
with increasing dimension d(µp

n
) by redistributing the weights in

the probability vectors p
n
. In contrast, the proof presented below uses the classical method

of Lagrange multipliers on finite dimensional subsets of P , before taking a limit, and has the
merits of being short and easy to generalize. Part 2. appears to be new.

2 Proof of Theorem 1.1

We can begin with the following standard lemma (see [2], Lemma 3.2, based on [5]).

Lemma 2.1. If d(µp) >
1
2
then h(µp), λ(µp) < +∞.

Since it is easy to exhibit p ∈ P with h(µp), λ(µp) < +∞ and d(µp) >
1
2

we can deduce

D > 1
2

and use Lemma 2.1 to write

D = sup

{
h(µp)

λ(µp)
: p ∈ P

}
.

Moreover, we can approximate any p ∈ P with h(µp), λ(µp) < +∞ by a probability vector
p∗ with:

p∗k =


p1 + εn if k = 1 (where εn :=

∑∞
l=n+1 pl)

pk if 2 ≤ k ≤ n

0 if k > n

1In [4] they showed D < 1− 10−7, but in unpublished work Jenkinson and the author have improved this
to D < 1− 5× 10−5

2At the Workshop on Hyperbolic Dynamics (Trieste, 19-23 June 2017)
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2 PROOF OF THEOREM 1.1

so that
h(µp∗ )

λ(µp∗ )
is arbitrarily close to

h(µp)

λ(µp)
for n sufficiently large. For the entropy, we have

|h(µp)− h(µp∗)| ≤ |p1 log p1 − (p1 + εn) log(p1 + εn)|+
∞∑

k=n+1

pk| log pk| → 0 as n→ +∞.

For the Lyapunov exponent, let ε > 0 and logM |T ′(x)| := min{log |T ′(x)|, 2 logM} then∣∣∣∣λ(µp)−
∫

logM |T ′(x)|dµp(x)

∣∣∣∣ ≤ 2

∫ 1/M

0

log

(
1

xM

)
dµp(x) < ε

for M ∈ N sufficiently large (since
∑∞

n=1 pn log n ≤ λ(µp) < +∞) and there is a correspond-
ing inequality with p∗ replacing p. We can next bound∣∣∣∣∣∣

∫
logM |T ′(x)|dµp(x)−

∑
i∈NN

pi logM |T ′(xi)|

∣∣∣∣∣∣ < ε

for N sufficiently large, where i = (i1, · · · , iN) gives the finite continued fraction xi =
[i1, · · · , iN ] and pi = pi1 · · · piN , and again there is a corresponding inequality with p∗ replac-
ing p. Finally, we can bound∣∣∣∣∣∣

∑
|i|=N

pi logM |T ′(xi)| −
∑
|i|=N

p∗i logM |T ′(xi)|

∣∣∣∣∣∣ ≤ logM
∑
|i|=N

|pi − p∗i | < ε

for n sufficiently large. (For the last inequality first note that for those i with 2 ≤ ij ≤ n
for 1 ≤ j ≤ N then pi = p∗i and there is no contribution. Furthermore, for those terms
with i for which there exists 1 ≤ j ≤ N with ij > n the summation can be bounded
(εn + p1 + · · · + pn)N − (p1 + · · · + pn)N → 0 as n → +∞. Finally, the remaining part of
the summation comes from i with ij ≤ n for 1 ≤ j ≤ N and at least one term being equal
1, and this is O(εn).) The triangle inequality gives |λ(µp)− λ(µp∗)| < 5ε. Therefore, we can
also write

D = sup
n

sup

{
h(µp∗)

λ(µp∗)
: p∗ ∈ Pn

}
, (2.1)

where Pn (n ≥ 2) is the finite dimensional simplex consisting of the probability vectors
p∗ = (p∗k)

∞
k=1 satisfying p∗k = 0, for k > n.

For each n ≥ 2 we can extend the definition of d(µp∗) := h(µp∗)/λ(µp∗) to a sufficiently
small neighbourhood Un ⊃ Pn so that the function Un 3 p∗ 7→ d(µp∗) is well defined and
smooth. We want to maximize this function subject to the additional restriction

∑n
k=1 p

∗
k = 1

which makes it natural to use the method of Lagrange multipliers. This allows us to deduce
that a critical point satisfies

∂d(µp∗)

∂p∗i
=
∂d(µp∗)

∂p∗j
for i 6= j. (2.2)
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2 PROOF OF THEOREM 1.1

The logarithmic derivative of d(µp∗) takes the form

1

d(µp∗)

∂d(µp∗)

∂p∗i
=

1

h(µp∗)

∂h(µp∗)

∂p∗i
− 1

λ(µp∗)

∂λ(µp∗)

∂p∗i
for 1 ≤ i ≤ n. (2.3)

We can rewrite the right hand side of (2.3) using the following two lemmas. The first follows
directly from the definition of h(µp∗).

Lemma 2.2.
∂h(µp∗ )

∂p∗i
= −(log p∗i + 1).

We denote the Cantor sets En := {[x1, x2, x3, . . .] : x1, x2, x3, · · · ≤ n} ⊂ [0, 1], for n ≥ 2.
For any Hölder continuous function f : En → R we can define the pressure (restricted to
En) by

P (f) = sup

{
h(µ) +

∫
fdµ : µ is a T -invariant probability measure supported on En

}
,

where h(µ) is the entropy of the measure µ, and there is a unique measure µf realizing the
supremum which is called the equilibrium state for f .

Example 2.3. We denote the intervals [i] :=
[

1
i+1
, 1
i

]
⊂ (0, 1], for i ≥ 1. Then µp∗ is the

equilibrium state for fp∗ =
∑n

j=1 χ[j] log p∗j .

For Hölder continuous functions f, g : En → R we have that R 3 t 7→ P (f + tg) ∈ R is
smooth and

∂P (f + tg)

∂t
|t=0 =

∫
gdµf (2.4)

(see [7], Question 5 (a) p.96 and [6], Proposition 4.10). For Hölder continuous functions
f, g1, g2 : En → R we have that R2 3 (t, s) 7→ P (f + tg1 + sg2) ∈ R is smooth and

∂2P (f + tg1 + sg2)

∂t∂s
|s=t=0 =

∫
(g1−g1)(g2−g2)dµf +2

∞∑
n=1

∫
(g1−g1)(g2−g2)◦σndµf (2.5)

where we denote g1 =
∫
g1dµ and g2 =

∫
g2dµ (see [7], Question 5 (b) p.96 and [6], Proposi-

tion 4.11).

Lemma 2.4. 1
λ(µp∗ )

∂λ(µp∗ )

∂p∗i
= 1

p∗i

∫
[i] log |T

′|dµp∗∫
log |T ′|dµp∗

− 1

Proof. Using (2.4) and the definition of λ(µp∗) we can first rewrite

λ(µp∗) =
∂P (fp∗ + t log |T ′|)

∂t
|t=0 and

∂λ(µp∗)

∂p∗i
=
∂2P (fp∗ + sχ[i]/p

∗
i + t log |T ′|)

∂s∂t
|t=0,s=0.

(2.6)
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2 PROOF OF THEOREM 1.1

Next we can use (2.5) with f = fp∗ , g1 = χ[i]/p
∗
i and g2 = log |T ′| to write

∂2P (fp∗ + sχ[i]/p
∗
i + t log |T ′|)

∂s∂t
|t=0,s=0

=
1

p∗i

∫ (
χ[i] − p∗i

)(
log |T ′| −

∫
log |T ′|dµp∗

)
dµp∗

+
2

p∗i

∞∑
n=1

∫ (
χ[i] − p∗i

)(
log |T ′| −

∫
log |T ′|dµp∗

)
◦ σndµp∗ .

(2.7)

If we consider the transfer operator Lfp∗ : C0(En)→ C0(En) defined by

Lfp∗w(x) =
n∑
k=1

p∗kw

(
1

k + x

)
(2.8)

which is the dual to the Koopman operator (see [7]) then since the dual to the transfer
operator satisfies L∗fp∗µp∗ = µp∗ we can rewrite (2.7) as

∂2P (fp∗ + sχ[i]/p
∗
i + t log |T ′|)

∂s∂t
|t=0,s=0

=
1

p∗i

∫ (
χ[i] − p∗i

)(
log |T ′| −

∫
log |T ′|dµp∗

)
dµp∗

+
2

p∗i

∞∑
n=1

∫
Lnfp∗

(
χ[i] − p∗i

)(
log |T ′| −

∫
log |T ′|dµp∗

)
dµp∗ .

(2.9)

From the definition of Lfp∗ we see that Lfp∗
(
χ[i] − p∗i

)
= 0 and we can deduce that the series

in (2.9) vanishes and then using (2.6) we can write

1

λ(µp∗)

∂λ(µp∗)

∂pi
=

1

p∗i

∫ (
χ[i] − p∗i

)( log |T ′|∫
log |T ′|dµp∗

− 1

)
dµp =

1

p∗i

∫
[i]

log |T ′|dµp∫
log |T ′|dµp

− 1.

Using the formulae in Lemmas 2.2 and 2.4 and the equality (2.3) we can rewrite (2.2) as

−(log p∗i+1)−d(µp∗)

(
1

p∗i

∫
[i]

log |T ′|dµp∗∫
log |T ′|dµp∗

− 1

)
= −(log p∗j+1)−d(µp∗)

(
1

p∗j

∫
[j]

log |T ′|dµp∗∫
log |T ′|dµp∗

− 1

)

for all 1 ≤ i, j ≤ n. Moreover, since 2p∗i log i ≤
∫
[i]

log |T ′|dµp∗ ≤ 2p∗i log(i + 1) this implies

that

2d(µp∗) log

(
i

j + 1

)
≤ log

(
p∗j
p∗i

)
≤ 2d(µp∗) log

(
i+ 1

j

)
(2.10)

for any n ≥ 2 and n ≥ i > j.
To construct p† ∈ P we use a simple tightness argument. For each sufficiently large n, let

p(n) ∈ Pn denote a measure maximizing Pn 3 p∗ 7→ d(µp∗). It then follows from (2.1) that
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3 ADDITIONAL REMARKS

limn→+∞ d(p(n)) = D > 1
2
. Since (2.10) applies to each of the p(n), and d(µp(n)) is arbitrarily

close to D for n sufficiently large, one can choose ε > 0, C > 0 and n0 > 0 such that

p
(n)
k ≤ Ck−(D−ε) for all k ≥ 1 and n ≥ n0.

We can choose a subsequence p(nr) (r ≥ 1) converging (using the usual diagonal argument) to

some p† ∈ P . To see that d(µp†) = D we first observe that d(µp∗(nr)) >
1
2

for sufficiently large

r. We can deduce from (2.1), and the definitions of the entropies and Lyapunov exponents,
that d(µp†) = limr→+∞ d(µp∗(nr)) = D. This completes the proof of part 1.

By applying (2.10) to p∗(nr) and taking the limit r → +∞ shows that the same bounds

apply for p† (with d(µp†) = D) and this completes the proof of part 2.

To prove the final part of the theorem, we use another standard argument (cf. [6],
Chapter 2, for the case of Hölder functions). We can consider the associated transfer operator
Lp† : C1([0, 1])→ C1([0, 1]) defined (by analogy with (2.8)) as

Lf
p†
w(x) =

∞∑
k=1

p†kw

(
1

k + x

)
for w ∈ C1([0, 1]).

First observe that Lp†1 = 1, and thus ‖Lp†w‖∞ ≤ ‖w‖∞, and
∥∥∥ d
dx

(
L2
f
p†
w
)

(x)
∥∥∥
∞
≤ 1

4
‖w‖∞

(cf. [6], Proposition 2.1). This is sufficient to show that for any w ∈ C1([0, 1]) one has
‖Ln

p†w−
∫
wdµp†‖∞ → 0 as n→ +∞ (compare [6], Theorem 2.2, (iv)). We can deduce that

for v, w ∈ C1([0, 1]) with
∫
vdµp† = 0 =

∫
vdµp† then since L∗

p†µp† = µp† we have∣∣∣∣∫ v ◦ T nwdµp†
∣∣∣∣ =

∣∣∣∣∫ vLnp†wdµp†
∣∣∣∣ ≤ ‖v‖∞.‖Lnp†w‖∞ → 0 as n→ +∞.

In particular, this implies that µp† is strong mixing, and thus ergodic (cf. [6], Proposition

2.4).

3 Additional remarks

Remark 3.1. The approach we have described should apply beyond the Gauss map. One of
the best known classes are the Rényi f -expansions, where in the definition of T the function
1/x is replaced by a more general (continuously differentiable) monotone decreasing function
f : (0, 1]→ [1,+∞) and π is replaced by a map πf : NN → [0, 1] (see [8], chapter 10). We can
then set s0 = inf{s > 0 :

∑∞
n=1 |(f−1)′(n)|s < +∞} and define Df by analogy with (2.1).

We would need to assume that Df > s0 and then one expects that a version of Theorem 1.1
holds in this setting, where part 2. would now take the form p†

k
� |(f−1)′(k)|D, for k ≥ 1.

Remark 3.2. The proof of Theorem 1.1 also generalizes in the following way. Let f : (0, 1]→
R be a locally constant function of the form f(x) = bi, say, if for 1

i+1
< x ≤ 1

i
, with super-

polynomial decay (i.e., for any β > 0, |bi| = O(i−β)). Given α ∈ int{
∫
fdµp : p ∈ P} we can

consider an expression common in multifractal analysis:

Df := sup

{
h(µ)∫
log xdµ

: h(µp), λ(µp) < +∞ and

∫
fdµ = α

}
. (3.1)
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Then there exists pf = (pf
k
)∞k=1 ∈ P such that: µpf realises the supremum in (3.1); pfk � k−2Df

for k ≥ 1; and µpf is ergodic.

Remark 3.3. We can compute higher derivatives of d(µp) using higher derivatives of the
pressure function. However, these do not seem particularly useful.
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