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ABSTRACT. We prove that Heisenberg groups, a.k.a. the boundaries of Siegel domains, minimize
the LP operator norm of the Szegd projection in a large class of weighted CR manifolds of
hypersurface type.

1. INTRODUCTION

The classical Szegé projection associates to every L? function on the boundary of a domain in
C™ its orthogonal projection onto the space of boundary values of holomorphic functions, that is,
the Hardy space H?. For a variety of pseudoconvex domains, the corresponding Szegd projection
is known to be a singular integral operator (see, e.g., [PS77,[NRSW89,]MS97,/CDO06]), whose LP
mapping behaviour is therefore of considerable interest from the point of view of harmonic and
complex analysis alike.

In this note, we compare the LP mapping behaviour of the Szegd projection S on a real hy-
persurface M C C"*! with the L? mapping behaviour of the Szegd projection S, on the model
strictly pseudoconvex hypersurface of the same dimension, namely the Heisenberg group

H* = {z € C"*': Imzpy1 = |2]°}, 2= (z1,...,2n).
The quantities of interest are the operator norms
IS/ 1Sn fll
1Sl := sup £ 1Sl =sup P (1<p=<oo)
SO i e VM ’

where the Szegd projections and the L? norms ||-| p are defined with respect to a fixed background
measure, which we always assume to have a smooth positive density with respect to Lebesgue
measure. The model hypersurface H" is identified in this paper with C" x R via the global
coordinates (2, Re zp4+1). The background measure on H" is then obtained by pulling back Lebesgue
measure of C™ x R via this identification.

Our main result shows that the model Szeg6 projection §,, minimizes the LP operator norm in
a large class of hypersurfaces M.

Theorem 1. If M is compact and pseudoconvex, then

1S1lpp = 1Snll

p—p = p—p°
The same conclusion holds, more generally, if M is a (2n + 1)-dimensional abstract CR manifold
of hypersurface type satisfying property C at some strongly pseudoconvez point xg.
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The definition of property C is given in Section This property depends on both the CR
structure and the choice of background measure on M, and it is automatically satisfied by every
compact pseudoconvex CR submanifold of CV (not necessarily a real hypersurface, see Remark
below) and by the model itself (see Proposition [g).

The idea of the proof is pretty straightforward: since M is well-approximated by the model
H" near a strongly pseudoconvex point xg, whenever f € L?(M) is sharply localized around
its Szegd projection Sf can be well-approximated by S, f , where f is a function obtained by
“transplanting” f on the model.

Yet, there is a difficulty. While the above sketch seems applicable to any abstract CR manifold
of hypersurface type with at least a strongly pseudoconvex point xy, we know a priori that such
an approach cannot work in this generality. In fact, there are compact strongly pseudoconvex CR.
structures on the three-dimensional torus T2 with the property that the only square-integrable
CR functions are the constants [Bar88|. For such a pathological non-embeddable CR manifold M,
the associated Szegd projection is the averaging operator Sf = ﬁ / v J dv, whose LP operator

norm is ||S||,—, = 1 for every p € [1,00]. Since S, is unbounded on L' (see, e.g., [Ste93, Chapter
12]), the conclusion of Theorem |1| cannot hold for M. Thus, some additional hypothesis, like our
property C, and the ensuing twists appearing in our argument, are indeed necessary.

A few more remarks may be of interest.

(1) We do not know whether a minimizer for the LP operator norm exists in the restricted
class of compact pseudoconvex embeddable CR manifolds of hypersurface type (of a fixed
dimension). It is natural to ask whether the standard CR sphere, endowed with a rotation
invariant measure, is such a minimizer. Since H™ and the punctured sphere S?"+1\ {x} are
CR isomorphic (see, e.g., [Ste93, Chapter 12]) and points have zero capacity in dimension
3 or higher, the Szeg6 projection on the standard CR sphere with respect to a rotation
invariant measure is equivalent to the Szeg6 projection gn on H" with respect to a certain
(finite) background measure, different from Lebesgue measure.

(2) To the best of our knowledge, the constants ||S,||,—p (except for the “trivial” cases p =

ntl ntl
1,00) are unknown. C. Liu shows |Liul8| that ||S,|/p—p > %%Fl();])

, where ¢ is the
conjugate exponent to p, and conjectures that equality holds.

(3) Since ||Sp]l151 = 00, Theoremimplies that the Szegd projection is unbounded on L' for a
variety of CR structures and background measures. More flexible arguments are available
to investigate the L' (un)boundedness of projection operators onto spaces of solutions of
first-order PDEs, see [Dal22].

(4) On a more speculative note, it is reasonable to expect that if M satisfies property C at some
weakly pseudoconvex point xg, then ||S|p—p > ||§||pﬁp for an appropriate model Szegd
projection S depending on the nature of the point xzy. E.g., if M is three-dimensional,
pseudoconvex, and xo has type 2m > 2, then the appropriate model should be {Imzo =
¢(21,71)} C C2%, where ¢ is a subharmonic (nonharmonic) homogeneous polynomial of
degree 2m. If S, is the projector on this model, a natural follow-up question is whether
Sollp=p > ISz 2 lp=p = [IS1llp—p Whenever ¢ has degree 4 or higher. If this were the
case, equality in Theorem [1| (in an appropriate class of manifolds) could only be achieved
in the strongly pseudoconvex case. This would be a first step in the understanding of
possible extremizers, other than the model, of the inequality of Theorem [I]

The paper is organized as follows: in Section [2| we rigorously define Szegé projections on
“weighted” CR manifolds and discuss property C, while in Section 4] we prove the main theo-
rem exploiting a couple of preliminary lemmas presented in Section
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2. SZEGO PROJECTIONS ON WEIGHTED CR MANIFOLDS

We assume that the reader is familiar with the basics of CR manifolds, for which we refer
to [BER9ILDT07]. We limit ourselves to recalling a few notions, mostly to establish notation.

A pair (M, Ty,0M) is said to be a CR manifold of hypersurface type if

i. M is a (2n + 1)-dimensional connected and orientable real smooth manifold;
ii. T1,0M is a rank n vector subbundle of the complexified tangent bundle CT'M such that
Ty oM NTy oM =0 and [Th oM, T oM] C T oM, ie., the commutator of smooth sections
of T1 oM is again a section of T oM.
A (2n + 1)-dimensional real smooth submanifold M of CV with the property that T3 oM :=
CIrmMnT: LO(CN has rank constantly equal to n is called a CR submanifold of hypersurface type:
the pair (M, T1 M) is a CR manifold of hypersurface type.

In what follows, we will usually omit the specification “of hypersurface type” and the bundle
T1,0M from the notation, and we will just say that M is a CR manifold, or a CR submanifold of
some CN.

The CR manifold M is pseudoconvex if there exists a global nowhere vanishing purely imaginary
one-form 6 annihilating T4 oM ® T1,0M and such that df(L, L) > 0 for every section L of Ty oM.
A point zg € M is said to be strongly pseudoconvex if df(L,L),, > 0 for every L that does not
vanish at z.

Example. In this paper H”, which will be simply called the Heisenberg group, is the CR manifold
obtained by endowing C} x R, with the CR structure bundle generated by the complex vector fields

Lj:=0,, +iz;0, j=1,...,n.

See [Ste93, Chapter 12] for details on the nilpotent Lie group structure of H"™ and its ties with
complex analysis. The Heisenberg group is everywhere strongly pseudoconvex. Our model weighted
CR manifold will be (H", ), where o = (%)n dzy Ndzy N ... Ndzp NdZ, N dt is Lebesgue measure
on C™ x R.

If f € Ll (M), we say that f is a CR-function if Lf = 0 in the sense of distributions for every
smooth section L of T oM. For the convenience of the reader, we recall what this means in our
context.

If L is a smooth vector field with complex coefficients, that is, a smooth section of the com-
plexified tangent bundle CTM, then we denote by LT the adjoint of L with respect to the natural
pairing of smooth functions with top-degree forms. More precisely, there is a unique first order

differential operator LT : Q2"+ — Q27+1 0 such that

/Lf-w:/ fLlw  VfeC®(M), VweQ2tiM,
M M

where Q7 M is the space of smooth compactly supported (2n+1)-forms on M. If L = Z?Z’fl a;j(x)0y,

and w = g(z)dzy A ... A dra,y1 in a local coordinate system, then Liw = — 232—1 aj(2)0z,9 —
(Z?Z‘fl Oz, a; (J:)) g. If f € L (M), then one says that Lf = 0 in the sense of distributions if

/ fLlw=0  Ywe QM.
M

A weighted CR. manifold is a pair (M, v), where M is a CR manifold and v is a smooth positive
(2n+1)-form on M. Of course, v may be thought of as a Borel measure on M with smooth positive
density with respect to Lebesgue measure in any coordinate chart.

Given a weighted CR manifold (M, v), we denote by CR?(M, 1) the space of CR functions that
are square-integrable with respect to v, with the usual identification of almost everywhere equal
functions.

Proposition 2. CR?(M,v) is a closed subspace of the Hilbert space L*(M,v).

This follows immediately from the definition of CR functions and the fact that if a sequence of
functions {fy}r converges in L?(M,v) to a function f, then limy_ 4o [, fow = [, fw for every
w e QM.

Thus, we may define the main object of study of the present paper.
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Definition 3. The Szegd projection Snr,, of the weighted CR manifold (M,v) is defined as the
orthogonal projection operator mapping L?(M,v) onto CR*(M,v). We denote by S, the Szegd
projection associated to the Heisenberg group (H", o).

We are interested in the LP-operator norms of Szeg6 projections, namely the quantities defined
by

N,(M,v) := sup{(/M |Sf|pdu>p . f € LA(M,v) and /M |f|Pdv = 1},

for p € [1,400), and by
Noo(M,v) :=sup {[|Sflloc: f € L*(M,v) and || f||oc =1} .

To formulate our main result, we need the notion of Property C (C is for “compactness”). Recall
that 0y is the operator mapping f € C°°(M) into the smooth section of By 1M, the dual bundle of
To1 M, defined by (0, f, L) = Lf for every section L of Ty oM. Given a smooth positive measure
v on M and a Hermitian metric h on By 1M, we have the associated quadratic form

(1) E(f) = / P+ /M B f 1 dv.

Given a precompact open set B C M, we denote by D(B) C L?(B) the completion of C°(B)
with respect to £. Notice that different choices of v and h produce isomorphic topological vector
spaces, because the corresponding quadratic forms £ are comparable on test functions supported
on B.

Definition 4 (Property C). We say that the weighted CR manifold (M, v) satisfies property C at
xg € M if there exists a precompact open neighborhood B of xy such that the operator

D(B) — L*B)
f — 13(1*31\47”)]0

18 compact, where 1g denotes the indicator function of B. By the observation right before this
definition, compactness is independent of the choice of metric on By M.

Remark 5. Property C is a local compactness condition of the kind playing an important role in
the theories of the O and the Oy problem (see, e.g., [Str10, Chapter 4]). By Sobolev embedding, it
holds whenever a subelliptic estimate of the form

lullwes) < Cllovull L2can

holds for every u € L?(M,v) orthogonal to CR*(M,v), where € > 0. Such a subelliptic estimate
with € = % is known to hold in a small enough neighborhood B of a strongly pseudoconvex point
xo € M, under the additional assumptions that M is compact, pseudoconvex, and that the mazximal
L? extension of Oy has closed range. We refer to [Koh85] for this and far more general results on
these matters.

We point out that, if M is a compact pseudoconvexr CR submanifold of CV, then the closed
range property automatically holds [Bar12b,|Bar12d]. Since such a CR submanifold necessarily has
a point of strong pseudoconverity (viz. any point at mazimal distance from the origin of C ), we
see that every compact pseudoconvex CR submanifold of CN has a strongly pseudoconvex point at

which property C holds, that is, satisfies the assumption of Theorem 1’ below.
We can now restate the main theorem in the more precise notation of this section.

Theorem 1°. Let (M,v) be a weighted CR manifold of dimension 2n + 1. If (M,v) satisfies
property C at a strongly pseudoconvex point g € M, then we have

N,(M,v) > N,(H",0) Vp € [1,+].
4
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3. PRELIMINARIES

3.1. Folland—Stein coordinates. Define the one-parameter group of parabolic scalings on C™ xR
as follows:

By (2,t) := (Az, \%t) (A>0).
We say that a monomial 2*z°t7, where a, 3 € N* and v € N, has parabolic weight
> (o +685) +27,

Jj=1

and that a smooth function defined in a neighborhood of (0,0) € C™ x R has parabolic weight > w
if every monomial with nonzero coefficient in its Taylor expansion has weight > w. The parabolic
weight of a vector field E = Z?:l {a;(2,t)0., + bj(2,t)0z, } + c(2,1)d; is computed by assigning
weight —1 to 0., and &z, and weight —2 to 9;. In other words, E has parabolic weight > w if
every a; and every b; has parabolic weight > w + 1 and ¢ has parabolic weight > w + 2.

We refer to [FS74] and [DT07, Theorem 3.5] for a proof of the following proposition.

Lemma 6 (Folland-Stein coordinates). Let M be a CR manifold and let zo € M be a strictly
pseudoconvex point. Then in a neighborhood of xq there exists a local system of coordinates (z,t) €
C™ x R such that (z(xo),t(x0)) = 0 and a system of local generators of Ty oM of the form

(2) szazj +i2j8t+Ej (jil,...,’ﬂ),
where the error terms E; have parabolic weight > 0.
3.2. A density lemma.

Lemma 7. There exists a dense subspace D of CR2(H", o) such that for every h € D, o, f € N7,
v €N, and N € N, we have

102020 h(z,t)| < Cw (|2 + [¢]) 7.

Proof. In view of the invariance under t-translations of the Heisenberg CR structure, we exploit
the partial Fourier transform

Ff(z,€) = \/%/Rf(%t)fi*i&dt

(cf. [Nag86,Has94lHas98| for similar arguments). The operator F is a unitary isometry of L?(H", 7),
and

3) F (0=, — i%00f) = (0=, + 2§ Ff = e oz, (S Fy).

Thus a function f € L?(H",0) is CR if and only if g(z,¢) = e$17I F f is holomorphic for every
€ € R. Since g € L2(C", e251#1") for almost every ¢ and there are no nonzero Lebesgue square-
integrable holomorphic functions on C", we must have g(z,£) = 0 for almost every £ < 0. In
conclusion, the operator f +— eI’ F f establishes a unitary isomorphism between CRQ(H", o) and
the Hilbert space

H {g: C" x (0,+00) — C: g(+,£) is holomorphic V¢ > 0 and

/ |g|26725|2|2 dV (z)d€ < —l—oo},
Cnx(0,4+00)

where dV(z) = (%)" dzy NdZ1 . . .Ndz, \NdZ, is Lebesgue measure on C™. A dense subspace D’ of H
is given by the linear span of functions of the form g(z,£) = P(z)p(§), where P(z) = P(z1,...,2n)
is a holomorphic polynomial and ¢ € C>°(R™). To see this, notice that if g € H is orthogonal to
D', then ¢! f;“ Jon 9(2,&)P(2)e~ %17 qV () d¢ = 0 for every a,e > 0. Letting ¢ tend to zero,
we see that, for almost every a > 0, [, g(z, a)P(z)efza‘ZPdV(z) = 0. By the arbitrariness of P
and the density of polynomials in the Fock space [Zhul2|, we conclude that g(z,a) = 0 for almost
every a > 0.
5
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Let D := F~1(D’). By what we just proved, D is dense in CR?*(H"). It is generated by elements
of the form

P() [ (e S etag

with P and ¢ as above. If ¢ is supported on [a,+00), then a standard integration by parts shows
that

(P = iy [ so(f)eﬁ'z'zeiftds] < e [pMe)as

Thus, every element of D decays faster than any negative power of |z|? + |t|. A similar argument
proves that the same holds for every derivative. ([

3.3. Models satisfy property C. The next result is not strictly needed for the proof, but shows
that the noncompact model (H", o) is in the class of CR manifolds to which the theorem applies.

Proposition 8. The model (H", o) satisfies property C at every point.

Proof. Let F be the partial Fourier transform as in the proof of Lemma |7} By , we have the
identity

F(Suf) (6 = B (T F1(,9))
where B is the Bergman projection of the Fock space (C”, 6*25‘2‘2), that is, the orthogonal pro-
jection onto the closed subspace of entire holomorphic functions that are square integrable with

respect to the Gaussian measure with density e~¢1=°. In particular, B = 0 when & < 0. The
following estimate is well-known:

(4)

/ (1 = Be)ul2e 2612 av(z) < 2¢ 7 > 10z, ul? e %l qy(z) wue o), € > 0.
" j

Cn

In fact, g = (1 — B¢)u is the solution of the equation dg = du of minimal Gaussian L? norm, and
one may apply [Hor90, Lemma 4.4.1].
Let f € C°(H™). Define the projection operator P<p (T € R) by the identity

I(PSTf) (Zvé-) = 1(—oo,T] (g)Ff(Z7§)7
and put Pop =1 — P<p.
Let T > 0. Applying to ef|'|2]:f(-,§) and integrating in £ € (T, +00), we find

2 _
(5) /" |Psr f —SnP>Tf|2dU < T/H" zj: ‘Ljf‘Q do.

Notice that we used the fact that L; and S,, commute with Psp. We treat the low-frequency
component using the standard commutator formula

/ ‘Ljf‘zdd :/ |fjf|2do+/ [Lj7fj]f ?da

Hn Hn Hn

Since [L;, L;] = —2i0, this immediately yields

©) | \iPeriio < | [LiPertPdo+2 | |PerfPo.
H"L H7Z Hn

The identity [L;, L;] = —2i0; also implies that {R(L);, S(L),}; is a system of vector fields satisfying
Hormander’s bracket condition of order 2. Hence (see, e.g., [Koh73]), we have

(7) U 1srs(my < C (1R + 32 (ILi e + T A1) | Vo € O™,

J

where B C C™ is a ball (or any, say, smooth open set) and wi/2 denotes the fractional Sobolev
norm of order 1/2. Putting (6) and (7)) together (and using again [L;, P<7] = 0), we obtain

®) 1P<r 1§12 < Co(L+2D)|If |72 +2C5 Y IIL;f117--
i
6
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We can now complete the proof. Given {fi}r C C°(B) with bounded CR energy, the sequence
{P<7 fx}x, and a fortiori {(1 — S,,) P<r fx }x, has a subsequence of L2-diameter < e. This follows
from (8) and the compactness of the Sobolev embedding Wz (B) < L%(B). If T > 22, by virtue
of the whole sequence {(1 — S,,)Psrfi}x has L%-diameter < ¢ too. The conclusion of the
proposition follows immediately. O

4. PrROOF OF THEOREM [II

Write S = Sy, for simplicity. Fix a coordinate patch Q around zy equipped with a system of
Folland—Stein coordinates (z,t), and p € [1,+00) (notice that S is self-adjoint, so the case p = oo
of the theorem follows by duality from the p =1 case).

We identify 2 with an open neighborhood of (0,0) in H” = C™ x R via these coordinates.

Fix f € C¢(H™). If A > 0 is large enough, depending on the support of f, f o ®, is supported
on (), and hence it may be thought of as a test function on M. Without loss of generality, we may
assume that 9% (zo) = 1, where o is Lebesgue measure in the Folland-Stein coordinates.

Thus S(fo®,) is a well-defined element of L?(M,v). Let p € C2°(H", [0,1]) be a cut-off function
identically equal to 1 in a neighborhood of the origin, i.e., of zg. We set p, := po ®, (u > 0).
Notice that the support of p,, shrinks to zg as p tends to co, and that S(f o ®,)p,, is supported
on () for every large u. Thus, it can be thought of as a function on H". Put

gx = (S(fo®r)py5) 0 Pr-1 € L*(H", 0).

Remark 9. It will be clear soon that /A could be replaced by any function F : Rt — RY such
that
. . F
lim F(A) =400 and lim —— =0.
A——+oo A—+oo A
In other words, what turns out to be crucial is localizing the Szeqd projection of f o ®y, which is
supported at the parabolic infinitesimal scale X\™1, at an infinitesimal scale much larger than A~ 1.

It is clear that for every A large

/ alPdo = X2 /Q S(f 0 ®3)p5/7do

(1402 [ 1870 B 517

IN

(1+ 0(1))A2"+2 N, (M, )P / TN
Q

(1+0(1))A\2"F2N, (M, u)p/ |f o ®y|Pdo
Q

1+ oN, (M) [ frde,

where we used a couple of times the fact that 9% (z) = 1.
By Banach-Alaoglu, along a diverging subsequence of \’s, gy has a weak limit both in L?(H", o)
and LP(H", o), for any fixed p > 1. Denoting this limit by g € L? N LP(H", o), we clearly have

) /H glPdo < Ny(M, )P / \[Pdo.

Cn xR
From now on, limits in A are always along appropriate diverging subsequences.
We claim that the limit g is CR with respect to the model structure, i.e., that g € CRZ(]HI"7 o).
To see this, we start by noticing that by ,

(10) f] (S(fO é/\)pﬁ) o <I>>\,1 = )\(aZJ +szat)g)\ + )\-E‘j)\g>\7

in the sense of distributions. If E; = Y, _; {a;x0., + 10z} + ¢;0;, the rescaled error terms
above are given by
E} =) {ajro®yt 0., +bjro®yt -85} + A0 011 -0,
k=1
7
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Notice that the formal adjoint of EJA (with respect to Lebesgue measure do) is fE])-‘ — )Flej o <I>)_\1,
where e;-\(z, t) is a smooth function.

Since p is identically 1 on a neighborhood V' of the origin, the left-hand side of vanishes on
® (V). Since Jy, @ /5x(V) = C" xR, for any ¢ € C°(H") and A large, we have

/ (0z;, +1Z;0)gx - pdo = f/ E;‘g)\ ~pdo
Cr xR Crn xR

= / gx - (E])‘ + A7 tej 0 @ o do.
Cn xR

By Lemma @ a; and bjj have parabolic weight > 1 and ¢ has weight > 2, and therefore

I(E} + A7tej 0 @5 1)¢lle = O(AT!). Since gy are uniformly in L?(C" x R), we conclude that

0,. +1z;0;)gx tends to zero in the sense of distributions. Thus, (9., + iz;0;)g = 0 and the claim
J J J J

is proved.

We are left with the proof that g = S,,(f). In fact, if we prove this then @D and the arbitrariness
of f show that N,(H", o) < N,(M,v), as we wanted.

Since we already know that g is CR, to prove that g = S,,(f) what we need to show is that
f — g is orthogonal to CR?(H", ¢). This is clearly equivalent to

lim grhdo = fhdo Vh € CR*(H",0).
A—+o0 H» H»

In fact, it is enough to verify this identity for h in the dense subspace D of Lemma By the
self-adjointness of S in L?(M,v), we have

/ gyhdo = / (S(fo‘lb\)p\/x) o®,-1-hdo

do

dv dv

AZn+2 /MS(fofI))\)pﬁJLoq),\

do dv
2n+2
AT /Qfoé/\s(p\/xdyho(b)\>d0d0'

do dv 1
= /an~{8<pﬁdy-ho<1>/\>da}oq))\ do

Notice that the various passages from do to dv are meaningful, because for A large, py and f o &,
are supported in 2.
Thus, our task is reduced to proving that

lim {S(pﬁ(jlz-hocb)\)jz}o@xlzh Vh € D

A——+o00

in the sense of distributions.
Notice that if we remove S from the expression in the limit, we get hp/\_ 1, which clearly L2
converges to h. Thus, setting

d
wim (1-8) (pao o).

it is enough to see that limy_, (uA g—g) o <I>;1 = 0 in the sense of distributions, i.e.,
dl 2n+2 o oo n
’LL)\d A po®ydo =0 VQOGCC (H )
n ag

Let B be the compact neighborhood of zy appearing in the definition of Property C. We claim
that:

(11) 15\ luy has a strong L? limit v, along an appropriate subsequence.

Notice that v and ¢ are comparable on B and we do not need to specify in which L? norm the
convergence happens.
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Let us show that the claim allows us to conclude the proof of the theorem. We write
d d
/ u,\—y)\Z"“go o®,do = / (A"l — v)—l//\"H(p o®, do
n do do

—l—/ (v— vo)d—l/)\"+1<p o®ydo+ A1 / Uog)\%"'zgp o ®, do,
n do n o do
where vg € C.(H") is such that |[v — vg||2 < e, with € small. Notice that ¢ o ®, is supported on
B for X large. Thus, the first term vanishes in the limit, simply because A\"*t1p o ®y is uniformly
bounded in L? norm, and the second is O(e) for the same reason. Since the last term equals
A7 1g(0,0) [ pdo + 0()\_"_1), the conclusion follows by the arbitrariness of .

We now prove claim (11)). In virtue of property C, it is enough to prove that the family of test
functions {A"“p\fd h o <I>,\},\ is bounded with respect to the “CR energy” . The L? norm is
clearly bounded uniformly in A. We compute, for L; as in Lemma @

d [— do do d
- d -
_ d
+ oy o M (05, + %000 + E}h} o @

[ .7 do — (do\]

do
+pyxg A (ENR) 0 @y,

where we used the fact that h is CR with respect to the Heisenberg structure. The easiest term to
deal with is

— (do\|?
Jupowans ()

/ ’\/X ((az] + iEjat)p + EJ\[\p) o (I)f
M

dv = (1+ o(1)) ‘L (;lZ) (0)‘2 A2 / |h|?do.

Next,

|h0q)/\| dv

= (14 o0(1))A"""1A
Hn

<Cu+ron [ jhod sPd
H"\V
where we used the fact that p is identically equal to 1 in the neighborhood V' of the origin and that

(0, +z'zjat>p+Eﬁp)| ho® 5 |do

the coefficients of EJ\& are bounded uniformly in A. Here we take advantage of the assumption that
hisin D. By Lemma the quantity above may be estimated by [ho® 5| < CnA~N (|22 +[t)~V
for any V € N. Choosing N large enough, we obtain the desired estimate.

Finally,

2

dU A
/M‘pﬁdyx(bﬂjh)o%

The vector field )\E;‘ has coefficients bounded uniformly in A\. Therefore, to bound the last term we
need [y, Y51 (102, h|* 419z, h[?) + [9;h|* < +00, which certainly holds for A € D. This completes
the proof of the boundedness of the CR energy of {)\”“p\f 92 -ho®,}y, and hence of the theorem.

dv = (1+o0(1))A\"2"2 /H IA(E}h) po o [ do.
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