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GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES
DANIEL ALPAY, PAULA CEREJEIRAS, UWE KAEHLER, AND BARUCH SCHNEIDER

ABSTRACT. Using g-calculus we study a family of reproducing kernel Hilbert spaces
which interpolate between the Hardy space and the Fock space. We give characterizations
of these spaces in terms of classical operators such as integration and backward-shift
operators, and their g-calculus counterparts. Furthermore, these new spaces allow us to
study intertwining operators between classic backward-shift operators and the g-Jackson
derivative.

1. INTRODUCTION

1.1. Prologue. The Hardy space of the open unit disk D, here denoted by Hy = Hy(D),
is the reproducing kernel Hilbert space with reproducing kernel

1 p—
1-2w

Z 2", z,weD,

n=0

and plays a key role in operator theory, linear system theory and Schur analysis. On the
other hand, the Bargmann-Fock-Segal space, here denoted by F and called Fock space
for short, is the reproducing kernel Hilbert space with reproducing kernel

2w i ann

T z,w € C,
n=0 T

and plays a key role in quantum mechanics (and more recently in signal processing).

The Hardy space Hy can be characterized (up to a positive multiplicative factor for the
inner product) as the only Hilbert space of power series converging at the origin and such

that

(1.1) RS = M,,

where M, is the operator of multiplication by z and

(1.2 Ryf(z) = LT

Note that in Hs we have the identities

(1.3) RoR;=Z, and RoM,-M,Ry=7-RjRy,=C"C,
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2 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER
where C'f = f(0) and Z is the identity operator. We remark that
(1.4) Z-RjRy=C*C,

which we will call structural identity, is the simplest of a family of identities characterizing
de Branges spaces.

Similarly, and besides Bargmann celebrated characterization 0* = M, (see [10, 11]), the
Fock space is (still up to a positive multiplicative factor for the inner product) the only
Hilbert space of power series converging at the origin and such that

(1.5) R: =1,

where I is the integration operator (see [3])
(L6) aNG)= [ 1)

1.2. The paper. The g-calculus allows to define a continuum of spaces between Hy and
F, namely the family of reproducing kernel Hilbert spaces Hs, indexed by ¢ € [0,1] and
with reproducing kernel

= 2w
Kq(Z,w)Z Z ' q¢ [Oal]a ZawEDl/lftp

where in the above expression

D D, =C, q=1,
e = {ze(C:|z|<ﬁ}, qel0,1)

Furthermore, [0] ! =1 and [n],!=1-(1+¢)-(1+g+¢*)(1+g+-+¢""), mneN. Thus,
in this notation, we have
HQ,O = H2 and H2,1 = f,
with
1 _
Ko(z,w) = koo(z,w) = - and  Ki(z,w) :=koq(z,w) = €.
- 2w

The g-calculus allows to gather into a common umbrella problems pertaining to the clas-
sical Hardy space Hy of the open unit disk and problems pertaining to the Fock space.
Consider now

(1.7) qu(z)zw, 0<q<l,

(1-q)z
while for ¢ = 1, we consider R; = 0. In this way we have a progression between two fun-
damental linear operators in analysis, namely the backward-shift and the differentiation
operators. Then, one can introduce the g-Fock space Hy, as the unique (up to a mul-
tiplicative positive constant) space of power series such that R} = M,. The case ¢ = 1
corresponds to the classical Fock space (see [10]). It is important to note already at this
stage that these operators satisfy a g-commutator relation (see also Lemma 2.2)

(1.8) R,M. - qM.R,=T.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES 3

2. ¢-CALCULUS
2.1. Iterative powers of the operator R,. Recall that R, was defined by (1.7).
Proposition 2.1. Let A, f(z) = f(qz). We have

I, (1-¢%A)
(1-q)"

Proof. Firstly, we observe the intertwining between R, and A,

fax) = 10) qf(qZ)q; 1O _ on Rof(2).

(2.9) RIf(2) =

Ry f(2), 0<g<1l, n=1,2,...

RoAgf(2) = Rof(qz) =

Secondly,
_f(z) - flgz) _ f(z) - f(0) - f(gz) + f(0)
RQf(Z)_ (1—q)z - (1—(])2
1 f()-F0) g faz)-£(0)
1-g¢ z 1-g¢ qz
_ (1 _1Qixq)R0f(Z)‘
q
Hence,

s = (U520 g

_ (1-qAy)Ro(1-qAy)Ro

(1-q)? 1)
_ (1-gA)(1 - ¢°Ag) B3
(1-q)? ),

and by induction the result holds:

ryso) - (A ) o

_ (A=A Ro(1 - gAg)Ro--(1 - gAq) Ry

- f(2)
(1-9)
_ (1-gAg)(1- QZAq)Rg (1-qAg) Ry 5
= a-qr f(2)
_ (1 _qu)(l_QZAq)'”(l _anq)Rgf(z).

(1-g)"
O

As we will see later (see Theorems 4.4 and 4.5), Ry has completely different properties
depending on which of the spaces at hand we compute the adjoint.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



4 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER

2.2. ¢g—Stirling numbers associated to higher commutation relations. In this sub-
section let us recall some facts regarding higher-commutator relations in g-calculus. While
they can be found, e.g., in [18] for the sake of self-sufficiency of the paper we present them
with proofs.

For the g-commutator we have the following well-known formula.

Lemma 2.2 (¢g-commutator). For the g-commutator it holds the following identity:

(2.10) [Ry, M.], = R,M. - gM.R, =T.

Proof. We have
R,M,2" = R;2" = (1+q+-+q¢")2", n=0,1,2,...

while
gM.R,z" =qM,R,1=0, n=0,
qM, R,2" =qM,(1+q+-+q")z" =(qg+q+-+¢")z", n=12,...
so that it holds (R,M, — ¢M,R,)z" = z", for all n € Nj. O

We define our ¢-Stirling numbers as coefficients S(n, k) of the following commutation
relation (see [7]):

(2.11) (M.Ry)":=> S(n,k)MFRE,  neN.
k=1

This formula can also be found in [18] (Theorem 3.1) and indirectly also in [19]. Further-
more, in [18], Section 4.1. there is a general exposition on how to construct such higher
order commutator relations including formulae for terms of the type (M7 R$)™ with r, s
multi-indices.

Lemma 2.3. We have for these q—Stirling numbers the following recursion formula
S(1,1) =1;
S(n,n)=S(n-1,n-1)¢"", n=23,...;
S(n,k)=(1+qg+-+¢"NHSn-1,k)+¢"'S(n-1,k-1), k=2,....,n-1.

This recursion formula is known in the literature. One can find it in [19] formula (1.15)
on page 93) or in the book [18] (Section 3.3, page 68 onwards).

Proof. In order to simplify notation, we write the expression for the g—Stirling numbers
as

(ab)" = g:l S(n, k)a"v*.

From the g—commutator we get ba = 1 + qab so that
b a =b""(ba) = b" (1 + qab) = b" ' + q(b" a)b
="+ [0+ q(b"2a)b] b= (1+q)b™ " + (b 2a)b?

=(1+q+-+g" )" + ¢ ab™.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES 5

Replacing in the above formula for the ¢g—Stirling numbers we obtain

(ab)" = ;S(”’ k)akbt

= (ab)"*(ab) = [:Z_:iS(n -1, k‘)akbk](ab)

n-1 n-1
=Y S(n-1,k)a"(bFa)b= > a*S(n-1,k) [(1 g+ g 4 qkabk] b
k=1 k=1

n—1

=y [(1 +q+-+g")S(n - 1,k)a"b* + ¢FS(n -1, k)ak“bk”]
k=1

n-1

=Y (L+g+-+d"")S(n-1,k)a"b" + > ¢*'S(n-1,k-1)a"b*
k=1 k=2

n-1
=S(n-1,1)ab+ ), [(1 +q+-+ " NS(n-1,k) +¢"'S(n-1,k- 1)] att + ¢ S(n-1,n - 1)a™b",
k=2

so that we have S(1,1) =1,
S(n,1)=8(n-1,1), S(n,n)=q¢"'S(n-1,n-1),
forn=23,... and
S(n,k)=0+qg++¢"1)S(n-1,k)+¢*'S(n-1,k-1),

for k=2,...,n-1. O
One can easily see the first g—Stirling numbers
| S(n,k) [ 1] 2 \ 3 [ 4]
1 1
2 1 q
3 1 2q + q* q°
4 1] @+3¢2+3q | ¢®+2¢*+3¢% | ¢°

Remark 2.4. We need to point out that there are two types of ¢-Stirling numbers of
the first or of the second kind in the literature. The more classic ones were obtained by
studying the corresponding partition problems in g-calculus (for a review on this topic
see [12, 13]). Here we have them as coefficients of the expansion of (M,.R,)" in (2.11) in
the same way as in [19] and [18]. Only in the classic case of ¢ = 1 this type of coefficients
coincides with classic Stirling numbers of the second kind, i.e. with the numbers of
partitions of a set of n objects into k£ non-empty subsets.

3. THE ¢-FOCK SPACE

Consider the positive definite function E,(2w) given by the ¢g-exponential:
> 2k 1 1
(31) E (Z) = = o — = , RE ]Dl 1—q>
! ;;] (k]! TI2e(1-2(1-9)¢)  (2(1-4);@)e i

evaluated at 2w, with [0], = 1 and [k], = 1+q+--+¢* " for k=1,2,..., and [k] ! = Hfzo[j]q,
le.

(k]! =[1]g[2]g[K]g=1-(1+q)- (1 +q+ ¢)(1+ g+ + g5 ).

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



6 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER

The term (a;q), = [T} (1 — ag’) denotes the g-Pochhammer symbol.

Definition 3.1. We denote by Hy, the reproducing kernel Hilbert space of functions
analytic in |z| < ﬁ with reproducing kernel E,(20).

As stated before when ¢ = 0 we get back the classical Hardy space of the open unit disk,
while ¢ - 1 leads to the classical Fock space; see e.g. [14, 15, 20] for the former, [22] for
the latter.

For functions belonging to the ¢-Fock space we have the following characterization based
on its power series expansion.

Lemma 3.2. f(z) = Y,"ya,2" belongs to Hy, if and only if

(3.2) [n],! |a,|? < oo.

n=0
Based on the g-Jackson integral (see [16], [17])

foa f(x)dgz = (1~ Q)agq’“f(qka%

we can define the following g-integral transform.

Definition 3.3. Given a bounded function f:[0,-1+1/(1-q)] - R we define its q-integral
transform as
k+1

M= [ e e = 3 () ()

With the help of this g-integral transform we get that the coefficients

# satisfy the
i

—

moment problem

1/(1-q)
[n],! = My(E; ) (n+1) fo 1B (gt)d,t

(400 S gD*

(1-9)" 5 (G @)
where (a;q), =117} (1 - ag’) denotes the g-Pochhammer symbol and (¢;q), =
For the disk ]D)l/(l—q) we have the measure (see [21])

0<qg<1, neNg,

(:9) 0
(" 59) e

[ee)

dpig(2) = (¢59) oo Z

2 e

k/2 . . . . . .
where 7, = \%—Tq while d),, is the normalized Lebesgue measure in the circle of radius 7.

This leads to the following characterization of the space Hy 4.

Theorem 3.4. The space Hy, corresponds to the space of all analytic functions in the
diskD 1 = {z:]z] < %_q} satisfying the condition

[[]D)l | (2)Pdpg(2) < oo.

The inner product of ng 18 given by

o ff F(2)9(2)dpuy(2) = Z £.g7n

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES 7

Proof. We have
(Do S ¢ e
n=mj P — rner/ 6z(n m)ade
o /[11 ta(2) 2m ,;)(q;q)k k 0

=270n,m
- 5nm(Q7Q)°° Tn
k=0 (¢ 9)x F

_ 5 (@0 g™t
(1 )" 20 (¢ D)k

Combining this result with our moment problem we obtain

), = M) e )= [ B at)d = ’”“[fl e

We observe that for ¢ — 1 we obtain dpu,(2) = e’ dzdy.

Also we get a convolution-type formula for our ¢-integral transform.

Lemma 3.5. Given bounded functions f1, f>:[0,-1+1/(1-q)] = R it holds (pointwisely)

(33 MU)AME = (1) Mulho 2,

where

(3.4) f10f2(q—m) =Tf ( Im) (q;”il:)'

Proof. From Definition 3.3 we have

M) My(F2)(2) = (Zq () (L ))(iq"(lq_nq)z_lf2(f7fl ))

=<1¢_q>ﬂiqm<f+;>”(ifl<fi+;>f2<q1”f;’“>)-

1=f1°f2(¢1%)

For the multiplication operator M, we have the following fact.
Proposition 3.6. M, is bounded from Hs , into itself with norm |M,| < {& rf

Proof. This follows from

%q—zw 1 1

M2, - 2w(1-q)¢) 1-q2 (1 -zw(l-q)¢i)

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



8 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER

Since the kernel 1_3(11_1;-';1 (1_2%(1_(1)(1].) is positive definite in Dy/;_4 so is the kernel

1 _
rq—zw

[T72(1 - 2w(1 - q)¢?)’

and we conclude with the characterization of multipliers in a reproducing kernel Hilbert
space. ]

Lemma 3.7. (see e.g. [2, Exercise 4.2.25, pp. 165 and 185])

(3.5) (Ref)(2)=Af(z) = [(2)=

C
[T72(1 - A(1-q)2¢7)

Proposition 3.8. The q-exponential satisfy

(3.6) (RyEq(w))(2) = WE,(2W).
Proof. We note that E,(qzw) = (1 -zw(1 -q))E,(2w) and so
E,(:) - B,(¢T)

(R E()(2) = ==
_ B,(2w) - (1-z0(1 - ) B, (=)
(1-q)2
=wE,(zw).

O

Theorem 3.9. Let g € [0,1). The only Hilbert space of functions which is analytic in a
neighborhood of the origin and for which

(3.7) R} =M,
is Hy g (up to a multiplicative factor for the inner product).

Proof. We have that E,(2w) = K,(z,w) is the reproducing for Hy 4, i.e. f(2) = (f, Eq(Z))ms.,-
Using (3.6) we can write:

(R E,(0)) (2) = (R E,(T), By(7))n,,
= (Eq('@)a RqEq('E))Hz,q
= (Eq(W),ZEq(Z) ),
= zE,(2w).

Therefore, we obtain Ry = M,. 0
Proposition 3.10. The space Hy 4 is a de Branges-Rovnyak space.

Proof. This follows from [4, Theorem 2.1 p. 51], since the sequence [k] !, for k=0,1,...
is an increasing sequence with initial term 1. 0

We now compute the adjoint of R, in H,,. Since

(3.8) (=", 2", = [n],! s

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES 9

we have
n m _ n Zm_qmzm _ m~—1 n ,m-1
(2", Ry )qu—(z, e )H2 =(l+q+-+gq )<z 2 >H2,q
=(l+g+--+q")[n]! =[n+1])

— [+l m> =.( * . n m>
<z 2 N, (R 2", 2 Mo,

Therefore, we obtain R} = M..

In the case g = 1 the Fock space can be characterized (up to a multiplicative positive factor
in the inner product) as the only Hilbert space of power series converging in a convex
neighborhood of the origin and such that

(39) (BD(:) = [ T(s)ds,

that is, R} coincides with the integration operator. It is therefore natural to try and
define the integral in Hy, by R} for g € (0,1).

Lemma 3.11. The operator Ry is bounded in Ha , and it holds that (with ex(z) = 2¥)

€k+1
1 cep=——-—-—  k=0,1,...
(3 O) Roek 1+q+"‘+qk’ 07 )

Proof. We have for k>1 and >0

(Roek, €e)r,, = (€r-1,€0)H,,
=[],

= 5]{_172(6167 ek)HZ,CI [k] ‘|

=01 T .
k 1,€<€k7 ek>H2,q 1+ g+ + qe
= (€k7R86£>H27q7
with

€o+1
3.11 Rjep= ————.
(3.11) 0% 1+qg+-+¢*

Consider the g-Jackson integral

S 1@ = (1= 00 o Fa).

which is said to converge provided that the sum on the right-hand-side converges abso-
lutely.

Lemma 3.12.

z 1
(3.12) f ldp =2t — —
0 1+qg+-+4¢*

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



10 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER

Proof. By definition we have

Az xgdql' = Z(l - Q) ]i)qk(qkz)f _ Z€+1(1 _ q) (li](qbrf)k)

= (] - q)l_;th _ zznm'
O
It is well known that
(3.13) 0" =M,

in the Fock space, and that in fact the Fock space is characterized (up to a positive
multiplicative constant in the inner product) by this equality; see [10]. In [8] it is proved
that in the Hardy space we have

(3.14) 0" = M,OM.,,

and that the above equality does characterize the Hardy space (as usual, up to a positive
multiplicative constant in the inner product). We now prove a formula which is valid for
q €[0,1] and englobes the two above formulas.

Theorem 3.13. Let g €[0,1]. Then in Hy, it holds that
(3.15) 0" = MOR;,

and this equality characterizes the space Hy, up to a positive multiplicative constant in
the inner product.

When ¢ = 0 (Hardy space) we have Rj that Rj = M, and so (3.15) reduces to
M.0M.,

ie. (3.14). When ¢ = 1 (Fock space), we have R§ = I (the integration operator) and
Oley =ex, k=0,1,.... We thus get back (3.13).

Proof of Theorem 3.13. Let k € Ny. Let us set a priori 0*ey, = ay q4e5+1 for some a4 € C.
We have on the one hand
(0" ek, epe1)H,, = (€r, OCpi1 )H,,
= (k+1){ex, er)n,,
=(k+1)[k],

and on the other hand, with 0*e;, = ai 4ex+1 We have

(0" ex, €k+1)H2,q = ak,q(€k+1, €k+1)H2,q
=0kgq [k) + 1:|q‘ .

Thus
agq [k +1],! = (k+1)[k],!
from which we get
k+1

3.16 =
(3.16) W =t g

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES 11

In view of (3.11), we can write

(k+1)M.ey
1+qg+-+4gF
= (k+1)Riex
= M.ORjey,

8*ek =

since

Mzﬁeml = (k’+1)6k+1, k’ZO,l,...

0

Note that in (3.16), we set axo =k +1 and ay; = 1, as it should be.

Theorem 3.14. We have

(3.17) M = R,M.R,.

Proof. For m=1,2,... we get

(Z",RquRgzm)HZ’q = (z”, Rqusz)HQ’q = (2", qum>H2,q :
By Proposition 3.10 we obtain
(2" RgM.Roz™" )y, = (2", Rz )y, = (M.2", 2" )y, -

We conclude our proof with the observation that 0 = (2", RquROZO)qu = (M.2", 2 )y, -

0

4. THE SPACE Fy,
The space F», appeared in [6] motivated by a study of discrete analytic functions.

Definition 4.1. Consider the reproducing kernel
> "

n=0 [n]q')2
Then the corresponding reproducing kernel Hilbert space F; 4 is the space of all functions
f(2) = Ealo faz™ such that 3370 | ful?([n]g!)? < 0.

In this way, we have K, = K;, and Ky, as the reproducing kernels of Hy, and Fy,,
respectively. As both kernels are positive definite and the same holds for its difference
K, , - Ky, we get that F , is contractively included in Hy , (see [1, 9]).

Remark 4.2. We observe that for fi(z) = fo(2) = E;'(2) we have

_1 9 ~ 1 n * m qm z=1| m 1 qk‘+1 1 qm+1—k
[Mq(Eq )(”+1)] = (1—_q) n;OQ (Tq) L;)Eq (1_q)Eq ( 1-g¢ )
2 _ LSy w47\ S ke m+1-k.
(1,7 = (7=,) Za(75,) 2@ 0= "0
Hence, we get as density ws 4 of our ¢g-Fock space F ,
1 \lP-1
(4.1 gl = (722) e B,

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



12 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER

and satisfying to
(4.2) My(waq)(n+1) = (%q)n M (E; o EJN)(n+1) = ([n],))*

Now, we can define T}, : Hy = Fy 4 given as 2" — %
Lemma 4.3. In Hy it holds:
(4.3) R,T,=T,Ry.

Proof. The case of n =0 is immediate. For n=1,2,... we have

2" 1
R/T,2" =R = (1+q+-+qg" )"t
e q([n]q!) [n],!
1
= —[n TN =T 2"t =T R2".
.

Theorem 4.4. The map T, is an isometry from Hy onto Fy .
Proof. We have (e, em)z,, = ([1],!)?0nm. Hence, we get

1 1
T ’miZj m =
( q€ qe )fiq [n]| [

7n]q'<enuenJ]§ﬂ

([n],1)?

= 5nﬁn________
([n],!)?
= 5nﬂn
:(enaem>H2-
Theorem 4.5. In F,, it holds that
En+l
(4.4) Rre,=——, n=0,1,
I [n]q
and
(4.5) I—R;Rq:C*C’,

and this structural identity characterizes the space Fo, up to a multiplicative factor.
Proof. To prove (4.4) we write
(Ryen,em)F,. = (ens Relm) 7y,
= [m]q<€n> Em-1 >J-'q,2
= m—l,n([n]q!)2[m]m
On the other hand we show that one can assume that Rye, = apén,1; we have
(Rpen;em) = anfeni1, em) 7,
= 01 m([n+1],1)%
Comparing these equalities we obtain
a([n+1]1)? = ([n]h)*[n],,

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



GENERALIZED ¢-FOCK SPACES AND STRUCTURAL IDENTITIES 13
so that a,, = ﬁ It follows that
q

0, n=0,
en, n=1,2,...

and hence the result. O

Ry Rse, = {

From the previous computations we also have:
Proposition 4.6. R} is an isometry in Fo .

Proof. This is a direct consequence of the fact that

RoRje, = ey,
for all n € Nj. O
From Lemma 3.12 we have:
Proposition 4.7. In Fy 4, it holds
Ry =1,

where 1 is the integration operator.

We now use well a known method in characteristic function theory (see e.g. [5] in the
case of Pontryagin spaces) and rewrite (4.5) as

(£t
(-

is therefore positive and for instance using its square root, one can find a Hilbert space
‘H and operators B and D,

The operator

(B) : 7-l—>.7-"2,q€BC,

D

such that . .

AR B RAN(R,)\ (B)([B

0 1 C C)] \DJ\D) -
The operator matrix

R, B

4s [ 1)
is co-isometric. We set
(4.7) S,(2)=D+2C(Z-2R,)"'B.

We now look into the properties of the matrix (4.6). We observe that

(z O):(Rq B)(Rq B)*_(RqR;+BB* RqC*+BD*)

0 1 ¢ DJ\C D) \CR;+DB* CC*+DD*

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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so that we get
DD*=1-CC*, BB*=T-R,R;, BD"=-R,C".
Hence, from (4.7) we get
Sy(2)[Sy(w)]* = [DT + 2C(T - 2R,) ' B][D*T + WB*(T - wR;)C*]
- DD*T +20(T - 2R,) ' BD* + WDB*(T - WR;)™C* + 2wC(T - 2R,) ' BB*(T - wR;) ™ C*
= (1-CC)T +2C(Z - 2R,) ' BD* +wDB*(T -wR:)"'C* + 2WC(T - 2R,) ' BB*(IT - wR;)™C*
so that
T - Sy(2)[Se(w)]*
- CC*T - 2C(T - 2R,) ' BD* ~wDB*(T -wR;)C* - 2wC(Z - 2R,) ' BB*(T -wR;)™'C"
- CC*T +20(T - 2R)) " R,C* + WCR: (T - WR:) ' C* = 2WC(T - 2R,) (T - RyR:)(T - WR:) ™ C”
- C(T - zRq)-l[ (T-2R,)(1-WR}) + 2R(T - WR:) +W(T - 2R,) R - 2wW(T - R,R?) ](I—wR;)-lc*.

A)

Easy calculations give now
(A) = (ZT-2R)(Z-wR;)+2R(T-wRy)+w(Z-2R,)R; - 2w(Z - R,Ry)
= I-zR,-wR, +2wR,R; + 2R, - zwR R, + WR, — 2wR, R, — 2wl + 2w R R,
= (1-zw)Z,
Hence, it holds that

Z - 54(2)Sq(w)*
1-zw

(4.8) =C(Z-2R) M(Z-wR)*I'C*, z,weD.

The operator S, bears various names in operator theory; it is the characteristic operator
function, or the transfer function, or the scattering function, associated to the operator
matrix (4.6). From (4.8) one sees that S, is analytic and contractive in the open unit
disk, i.e. is a Schur function.

When ¢ = 0 we have for f(z) =Y, c,2" that
C(Z-zRy)'f=f(2), zeD.
Here, for 0 < ¢ <1 we define
f4(2)=C(Z-2R,)f, zeD.
As CR f = [n],! e, we get that the coefficients
CRyf
" Inl!

are independent of ¢ and one has f,(z) = f(z), that is, we obtain f(z) = C(Z - zR,)"'f
for all z e D.

(4.9) Cn
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