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ON WEAK SOLUTIONS TO THE KINETIC CUCKER–SMALE

MODEL WITH SINGULAR COMMUNICATION WEIGHTS

YOUNG-PIL CHOI AND JINWOOK JUNG

Abstract. We establish the local-in-time existence of weak solutions to the ki-

netic Cucker–Smale model with singular communication weights ϕ(x) = |x|−α

with α ∈ (0, d). In the case α ∈ (0, d − 1], we also provide the uniqueness

of weak solutions extending the work of Carrillo et al [MMCS, 17-35, ESAIM

Proc. Surveys, 47, EDP Sci., Les Ulis, 2014] where the existence and unique-
ness of weak solutions are studied for α ∈ (0, d− 1).

1. Introduction

In the current work, we are concerned with the local-in-time existence and
uniqueness of weak solutions to the kinetic Cucker–Smale model with singular com-
munication weights. Specifically, let f = f(t, x, v) denote the probability distribu-
tion function for a particle at position x ∈ Rd with velocity v ∈ Rd at time t. Then
f is governed by the following Vlasov-type kinetic equation:

∂tf + v · ∇xf +∇v · [Fϕ(f)f ] = 0, (x, v) ∈ Rd × Rd, t > 0 (1.1)

subject to initial data:

f(0, x, v) =: f0(x, v), (x, v) ∈ Rd × Rd, (1.2)

where Fϕ(f) = Fϕ(f)(t, x, v) represents the velocity alignment given by

Fϕ(f) =

∫∫
Rd×Rd

ϕ(x− y)(w − v)f(t, y, w) dydw = ϕ ⋆ m− vϕ ⋆ ρ.

Here ρ = ρ(t, x) and m = m(t, x) denote the local density and momentum of
particles, respectively:

ρ(t, x) :=

∫
Rd

f(t, x, v) dv, m(t, x) :=

∫
Rd

vf(t, x, v) dv,

ϕ is the singular communication weight function given by

ϕα(x) := |x|−α with α ∈ (0, d), (1.3)

and ⋆ refers to convolution in the x variable unless specified otherwise.

Date: February 15, 2024.

2020 Mathematics Subject Classification. 2010 MSC: 35D30, 35Q92.
Key words and phrases. Kinetic Cucker–Smale model, singular communication weights, weak

solutions, log-Lipschitz estimate.

1

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



2 CHOI AND JUNG

The kinetic equation (1.1) can be derived from the following particle system by
means of a mean-field limit:

d

dt
xi = vi, i = 1, . . . , N, t > 0,

d

dt
vi =

1

N

∑
i ̸=j

ϕ(xi − xj)(vj − vi),
(1.4)

where xi = xi(t) and vi = vi(t) are the position and velocity of ith particle at
time t > 0, respectively. The system (1.4) with a regular communication weight,
which is also known as the Cucker–Smale (CS) model, is proposed in [7]. Here the
regular communication weight means that it is bounded and Lipschitz at least. The
velocity alignment behavior of solutions showing max1≤i,j≤N |vi(t)− vj(t)| → 0 as
t→ ∞ and supt≥0 max1≤i,j≤N |xi(t)− xj(t)| <∞ is obtained in [7] under suitable
assumptions on the initial configurations, and later it is improved in [3, 9, 10]. The
system (1.4) with the singular communication weight (1.3) is studied in [2, 6, 9, 15,
16] and it exhibits rich phenomena such as the unconditional collision-avoidance
behavior or sticking of particles. We refer to [4, 14] and references therein for
various results on the Cucker–Smale model and its variants.

Our main purpose is to establish the existence of weak solutions to the equation
(1.1) for α ∈ (0, d). Moreover, we also study the uniqueness of weak solutions when
α = d− 1. In particular, our uniqueness result combined with [1] implies that the
weak solution to (1.1) with α ∈ (0, d− 1] exists uniquely.

To state our main result, we shall first introduce a notion of our weak solutions
to the equation (1.1).

Definition 1.1. For a given T ∈ (0,∞), f is a weak solution of (1.1) on the time
interval [0, T ] if and only if the following holds:

(i) f ∈ L∞(0, T ;L1
+ ∩ L∞(Rd × Rd)) and

(ii) for all Ψ ∈ C∞
c ([0, T )× Rd × Rd),∫∫

Rd×Rd

f0(x, v)Ψ(0, x, v) dxdv

= −
∫ T

0

∫∫
Rd×Rd

f(∂tΨ+ v · ∇xΨ+ ϕ ⋆ m · ∇vΨ) dxdvdt

+

∫ T

0

∫∫
Rd×Rd

(ϕ ⋆ ρ)f(v · ∇vΨ) dxdvdt.

In order to show the uniqueness of weak solutions, we introduce the pth-order
Wasserstein distance which is defined by

dp(ρ1, ρ2) :=

(
inf
γ

∫∫
Rk×Rk

|x− y|p dγ(x, y)
) 1

p

for ρ1, ρ2 ∈ Pp(Rk), k ∈ N, p ∈ [1,∞), where γ is any transference plan between ρ1
and ρ2, i.e. for any ψ ∈ Cb(Rk),∫∫

Rk×Rk

ψ(x) dγ(x, y) =

∫
Rk

ψ(x)ρ1(x) dx

and ∫∫
Rk×Rk

ψ(y) dγ(x, y) =

∫
Rk

ψ(y)ρ2(y) dy.
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WEAK SOLUTIONS OF THE KINETIC SINGULAR CUCKER–SMALE MODEL 3

Here Pp(Rk) stands for the set of probability measures with bounded pth-order
moment. Note that Pp(Rk) is a complete metric space endowed with the pth-
order Wasserstein distance dp(·, ·) [17]. Throughout the paper, the notation for
a probability measure and its probability density is often abused for notational
simplicity.

We now present our main result on the existence of weak solutions to (1.1).

Theorem 1.1. Let d ≥ 1 and α ∈ (0, d). Suppose that the initial data f0 is
compactly supported in velocity and satisfies

f0 ∈ L1
+ ∩ L∞(Rd × Rd) and |x|f0 ∈ L1(Rd × Rd).

Then there exist T > 0 and at least one weak solution f to (1.1)-(1.2) in the sense
of Definition 1.1. Moreover, if α ∈ (0, d − 1], the solution obtained above exists
uniquely. Indeed, if fi, i = 1, 2 are two such solutions to (1.1), then we have the
following stability estimate:

d

dt
d1(f1(t), f2(t)) ≤ Cd1(f1(t), f2(t))

(
1− 1{α=d−1} log

− d1(f1(t), f2(t))
)

(1.5)

for t ∈ (0, T ), where log−(x) := 0 ∧ log x.

Remark 1.1. Notice that when α ∈ (0, d− 1) the negative part of log on the right-
hand side of (1.5) does not appear. In the case α = d − 1, the stability estimate
of solutions resembles that in [12], where the uniqueness of weak solutions to the
Vlasov–Poisson system with bounded density is discussed. More specifically, the
following functional inequality is used in [12]:

∥∇(−∆)−1(ρ1 − ρ2)∥L2 ≤ (∥ρ1∥L∞ ∨ ∥ρ2∥L∞)
1
2 d2(ρ1, ρ2)

for ρ1, ρ2 ∈ P2 ∩ L∞(Rd). By employing the above inequality, the log-Lipschitz
stability estimate in the second-order Wasserstein distance d2 is obtained. However,
we do not use any functional relations and directly provide the log-Lipschitz stability
estimate for solutions in d1.

Remark 1.2. For the existence of solutions, the regularity of solutions can be

relaxed to f ∈ Lp(Rd × Rd) for some p ∈
(

d
d−α ,∞

)
, see Remark 2.2 for details.

However, we need L∞-regularity of solutions for the uniqueness.

In the case α ∈ (0, d − 1), the local-in-time existence and uniqueness of weak
solutions to (1.1) in the sense of Definition 1.1 are obtained in [1]. Thus, the main
contribution of this work corresponds to the case α ∈ [d− 1, d) with respect to the
existence and α = d− 1 in regard to the uniqueness. For the existence of solutions,
we regularize the equation of (1.1) removing the singularity in the communication
weight ϕ. We then discuss the uniform bound estimates for the velocity-support
and L1 ∩ L∞-norm of regularized solutions. Here, we would like to point out
that a Cauchy estimate of solutions with respect to the regularization parameter is
obtained in [1], and from which the existence and uniqueness of solutions to (1.1)
are shown. However, this strategy enforces the condition on the singular exponent
α such that α < d − 1. To cover the case α ∈ [d − 1, d), unlike [1], we crucially
employ appropriate weak and strong compactness theorems to obtain the existence
of L1 ∩ L∞-solutions.

For the uniqueness of such solutions, we only deal with the case α = d− 1. Mo-
tivated from [12, 13], we show the force field Fϕ(f)(x, v) is log-Lipschitz continuous
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4 CHOI AND JUNG

and from which we establish the stability estimate (1.5). In the case α > d− 1, the
uniqueness can be obtained by dealing with more regular solutions [5]. In partic-
ular, when α ≥ d, it is proved in [8] that suitable weak measure-valued solutions
to (1.1) are monokinetic, rougly speaking, it has a Dirac delta distribution with
respect to the velocity variable.

The rest of this paper is organized as follows. In Section 2, we introduce the
regularized equation and provide some uniform bound estimates with respect to
the regularization parameter. Section 3 is devoted to the proof of Theorem 1.1.

2. Regularized equation & uniform bound estimates

We first regularize the equation (1.1) as follows:

∂tf
ε + v · ∇xf

ε +∇v · [(ϕε ⋆ mε − vϕε ⋆ ρε) fε] = 0, (2.1)

subject to the initial data:

fε(0, x, v) = (f0 ⋆x,v θε)(x, v), (x, v) ∈ Rd × Rd,

where θε(x, v) = ε−2dθ(x/ε, v/ε) is the standard mollifier with

0 ≤ θ(x, v) ∈ C∞
c (Rd × Rd),

∫∫
Rd×Rd

θ(x, v) dxdv = 1,

and ϕε = ϕε(x) is written as

ϕε(x) :=
1

(ε+ |x|2)
α
2
.

Here we suppose that

suppv(f0) ⊂ B(0, R0), suppv(θ) ⊂ B(0, R1).

Then we have

suppv(f
ε
0 ) ⊂ B(0, R0 + εR1),

which means that fε0 is also compactly supported in v for every ε > 0. From now
on, without loss of generality, we assume that ε < 1. Then the standard results
on the classical solutions of the kinetic Cucker–Smale equation implies the global
existence of classical solutions fε to (2.1) for every ε > 0, see [10] for instance.
First, the following result is direct from the estimates in [1, Lemma 3.1].

Lemma 2.1. Let T > 0 and fε be the classical solution to (2.1) on the time interval
[0, T ]. Then we have

suppv(f
ε(t)) ⊂ suppv(f

ε
0 ) ⊂ B(0, R0 +R1)).

Next, we investigate uniform-in-ε estimate for L1 ∩ L∞-norms of fε.

Lemma 2.2. Let T > 0 and fε be the classical solution to (2.1) on the time interval
[0, T ]. Then there exists T ∗ ∈ (0, T ] independent of ε such that

sup
0≤t≤T∗

∥fε(t)∥L1∩L∞ ≤ 4∥f0∥L1∩L∞ .
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WEAK SOLUTIONS OF THE KINETIC SINGULAR CUCKER–SMALE MODEL 5

Proof. Straightforward computation gives that for any p ∈ [1,∞)

d

dt
∥fε(t)∥pLp = −p

∫∫
Rd×Rd

(fε)p−1∇v · [(ϕε ⋆ mε − vϕε ⋆ ρε)fε] dxdv

= (p− 1)

∫∫
Rd×Rd

∇v[(f
ε)p] · (ϕε ⋆ mε − vϕε ⋆ ρε) dxdv

= d(p− 1)

∫∫
Rd×Rd

(ϕε ⋆ ρε)(fε)p dxdv.

(2.2)

Thus if p = 1, we first obtain

∥fε(t)∥L1 = ∥fε(0)∥L1 = ∥f0∥L1 .

We also find

ϕε ⋆ ρε =

∫
Rd

1

(ε+ |x− y|2)α
2
ρε(y) dy

≤

(∫
|x−y|≥1

+

∫
|x−y|≤1

)
1

|x− y|α
ρε(y) dy

≤ ∥ρε(t)∥L1 + C∥ρε(t)∥L∞

≤ ∥f0∥L1 + C∥fε(t)∥L∞ ,

where we used

∥ρε(t)∥L∞ =

∥∥∥∥∫
Rd

fε(·, v, t) dv
∥∥∥∥
L∞

≤ C(R0 +R1)
d∥fε(t)∥L∞ ,

due to Lemma 2.1. This together with (2.2) yields

d

dt
∥fε(t)∥pLp ≤ d(p− 1)∥ϕε ⋆ ρε∥L∞∥fε(t)∥pLp

≤ C(p− 1)(∥f0∥L1 + ∥fε(t)∥L∞)∥fε(t)∥pLp ,

and from which, we obtain

d

dt
∥fε(t)∥Lp ≤ C(∥f0∥L1 + ∥fε(t)∥L∞)∥fε(t)∥Lp ,

where C > 0 is independent of p and ε > 0. We finally apply the Grönwall’s lemma
and pass to the limit p→ ∞ to conclude the desired result. □

Remark 2.1. Since fε ∈ C([0, T ∗];L1(Rd×Rd)∩L∞((0, T ∗)×Rd×Rd) uniformly
in ε, we also actually have

fε ∈ L∞(0, T ∗;Lp(Rd × Rd)) ∀p ∈ [1,∞].

Moreover, since the support of fε in velocity is uniformly bounded in ε, we can find
a constant C > 0 independent of ε such that

sup
0≤t≤T∗

(∥ρε(t)∥Lp + ∥mε(t)∥Lp) ≤ C sup
0≤t≤T∗

∥fε∥Lp <∞.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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Remark 2.2. For p ∈
(

d
d−α ,∞

]
, we get

ϕε ⋆ ρε =

∫
Rd

1

(ε+ |x− y|2)α
2
ρε(y) dy

≤

(∫
|x−y|≥1

+

∫
|x−y|≤1

)
1

|x− y|α
ρε(y) dy

≤ ∥ρε(t)∥L1 + C∥|x|−α1{|x|≤1}∥Lp′∥ρε(t)∥Lp

≤ ∥f0∥L1 + C∥fε(t)∥Lp ,

where p′ is the Hölder conjugate of p, i.e. p′ = p
p−1 <

d
α . Thus, one can relax the

assumption f0 ∈ L∞(Rd × Rd) to f0 ∈ Lp(Rd × Rd) for some p ∈
(

d
d−α ,∞

)
and

proceed our strategy for the proof of existence of weak solutions.

Next, we discuss the x-moment estimates for fε.

Lemma 2.3. Let fε be the classical solution to (2.1) on the time interval [0, T ∗].
Then we have∫∫

Rd×Rd

⟨x⟩fε(t, x, v) dxdv ≤ C

∫∫
Rd×Rd

fε0 (x, v) dxdv, t ∈ (0, T ∗].

Proof. Direct computation gives

d

dt

∫∫
Rd×Rd

⟨x⟩fε(t, x, v) dxdv =

∫∫
Rd×Rd

(x · v)
⟨x⟩

fε(t, x, v) dxdv

≤ C(R0 +R1)

∫∫
Rd×Rd

fε(t, x, v) dxdv

≤ C

∫∫
Rd×Rd

fε0 (t, x, v) dxdv,

and this yields the desired estimate. □

3. Proof of Theorem 1.1

3.1. Existence of weak solutions. Now, we present the proof of Theorem 1.1.
Before proceeding, we present a variant of velocity averaging lemma in [11] as
follows.

Lemma 3.1. For p ∈ (1,∞], let {fm} be compactly supported in velocity uniformly
in m and {Gm} be bounded in Lp

loc([0, T ] × Rd × Rd). Suppose that fm and Gm

satisfy

∂tf
m + v · ∇fm = ∇ℓ

vG
m, fm|t=0 = f0 ∈ Lp(Rd × Rd)

for some multi-index ℓ and

sup
m∈N

∥fm∥L∞(0,T ;L1∩Lp(Rd×Rd)) + sup
m∈N

∥|x|fm∥L∞(0,T ;L1(Rd×Rd)) <∞,

then for every φ ∈ C|ℓ|(R2d) satisfying |φ(v)| ≤ c|v|, the sequence{∫
Rd

fmφdv

}
is relatively compact in Lq((0, T )× Rd) for q ∈ (1, p).

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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Proof. The proof proceeds similarly to the arguments in [11, Lemma 2.7], but we
write here for readers’ convenience.

First, we write

ϱmφ :=

∫
Rd

fmφdv.

Due to the uniform compact support in velocity of fm, we also have

sup
m∈N

∥ϱmφ ∥L1∩Lp((0,T )×Rd) + sup
m∈N

∥|x|ϱmφ ∥L∞(0,T ;L1(Rd)) <∞. (3.1)

Then we use [11, Proposition 2.5] to find ϱφ satisfying

ϱmφ → ϱφ strongly in Lq
loc((0, T )× Rd)

for q ∈ (1, p), up to a subsequence. Due to the uniform bounds (3.1), we can use a
diagonal extraction process to make ϱφ satisfy

∥ϱφ∥L1∩Lp((0,T )×Rd) + ∥|x|ϱφ∥L∞(0,T ;L1(Rd)) <∞.

For the compactness in Lq((0, T )×Rd), we again use the compact support in velocity
and choose any k > 0 so that∫

|x|≥k

(ϱmφ )q dx ≤
∫
|x|≥k

(
|x|
k

) 1
ℓ

(ϱmφ )q−
1
ℓ+

1
ℓ dx

≤ C

(
1

k

) 1
ℓ
(∫

Rd

(ϱmφ )
qℓ−1
ℓ−1 dx

) ℓ−1
ℓ
(∫

Rd

|x|ϱmφ dx

) 1
ℓ

,

where ℓ > 1 is a constant satisfying

q ≤ pℓ− p+ 1

ℓ
, so that

qℓ− 1

ℓ− 1
≤ p.

Then due to (3.1), we get ∫
|x|≥k

(ϱmφ )q dx→ 0

as k → ∞ uniformly in m. Since the above argument also holds for ϱφ, this
combined with the strong convergence in Lq

loc((0, T )×Rd) gives the desired result.
□

Proof of Theorem 1.1: existence. Now, we recall from Lemma 2.2 and Remark 2.1
that

∥fε∥L∞(0,T∗;Lp(Rd×Rd)) + ∥ρε∥L∞(0,T∗;Lp(Rd)) + ∥mε∥L∞(0,T∗;Lp(Rd)) ≤ C,

for p ∈ [1,∞], where C > 0 is independent of ε. Then we can obtain the following
weak convergence as ε→ 0 up to a subsequence: for any p ∈ [1,∞],

fε
∗
⇀ f in L∞(0, T ∗;Lp(Rd × Rd)),

ρε
∗
⇀ ρ in L∞(0, T ∗;Lp(Rd)),

mε ∗
⇀m in L∞(0, T ∗;Lp(Rd)).

Once we write

Gε := − (ϕε ⋆ mε − vϕε ⋆ ρε) fε,

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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it is not difficult to show that Gε ∈ Lp
loc([0, T ] × Rd × Rd) for some p ∈ (1,∞).

Thus, we can use Lemma 3.1 to obtain, for every p ∈ (1,∞),

ρε → ρ in Lp((0, T ∗)× Rd)) and a.e.,
mε → m in Lp((0, T ∗)× Rd)) and a.e.

as ε→ 0, up to a subsequence. Hence, it remains to show that the limit f satisfies
(1.1) in the distributional sense. For this, it suffices to show that

(ϕε ⋆ mε − vϕε ⋆ ρε) fε → (ϕ ⋆ m− vϕ ⋆ ρ) f

in the distributional sense as ε → 0. Since the argument is similar, we only show
the convergence

(ϕε ⋆ mε) fε → (ϕ ⋆ m) f.

For this, we choose Ψ ∈ C∞
c ([0, T ∗]× Rd × Rd) arbitrarily and estimate∫ t

0

∫∫
Rd×Rd

[(ϕε ⋆ mε) fε − (ϕ ⋆ m) f ] ·Ψ dxdvds

=

∫ t

0

∫
Rd

(ϕε ⋆ (mε −m)) ρεΨ dxds+

∫ t

0

∫
Rd

((ϕε − ϕ) ⋆ m) ρεΨ dxds

+

∫ t

0

∫
Rd

(ϕ ⋆ m) · (ρεΨ − ρΨ) dxds

=: Iε + IIε + IIIε,

where

ρεΨ :=

∫
Rd

fεΨ dv, and ρΨ :=

∫
Rd

fΨ dv.

Note that ρεΨ and ρΨ satisfy

∥ρεΨ∥L∞(0,T∗;Lp(Rd)) + ∥ρΨ∥L∞(0,T∗;Lp(Rd)) ≤ C,

for any p ∈ [1,∞] and C > 0 is a constant independent of ε.
For Iε, we choose p ∈ ( d

d−α ,∞) and denote the Hölder conjugate of p by p′.
Then the strong convergence of mε implies

Iε ≤ C∥|x|−α1{|x|≤1}∥Lp′ (Rd)∥m
ε −m∥Lp((0,T∗)×Rd)∥ρεΨ∥L∞(0,T∗;L1(Rd))

+ C∥|x|−α1{|x|>1}∥
L

d+1
α (Rd)

∥mε −m∥
L

d+1
d+1−α ((0,T∗)×Rd)

∥ρεΨ∥L∞(0,T∗;L1(Rd))

≤ C

(
∥mε −m∥Lp((0,T∗)×Rd) + ∥mε −m∥

L
d+1

d+1−α ((0,T∗)×Rd)

)
,

and this implies Iε → 0 as ε→ 0.
For IIε, we have

IIε ≤ C∥(ϕε − ϕ)1{|x|≤1}∥L1(Rd)∥m∥L∞((0,T∗)×Rd)∥ρεΨ∥L∞(0,T∗;L1(Rd))

+ C∥(ϕε − ϕ)1{|x|>1}∥
L

d+1
α (Rd)

∥m∥
L

d+1
d+1−α ((0,T∗)×Rd)

∥ρεΨ∥L∞(0,T∗;L1(Rd)),

and the dominated convergence theorem implies IIε → 0 as ε→ 0. Since the weak
convergence of fε toward f directly implies IIIε → 0 as ε→ 0, we have shown the
desired convergence and hence, this concludes the proof for the existence result in
Theorem 1.1. □

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



WEAK SOLUTIONS OF THE KINETIC SINGULAR CUCKER–SMALE MODEL 9

3.2. Uniqueness of weak solutions. As mentioned before, the case α ∈ (0, d−1)
is already studied in [1], thus in this section, we investigate the uniqueness of weak
solutions when α = d− 1.

For this, motivated from [13, Lemma 8.1, Chapter 8], we first provide the log-
Lipschitz estimate concerned with the communication weight ϕ(x) = |x|1−d.

Lemma 3.2. Suppose that h ∈ L1 ∩ L∞(Rd). Then we have

∫
Rd

|ϕ(x1 − y)− ϕ(x2 − y)||h(y)| dy ≤ C∥h∥L1∩L∞ |x1 − x2|(1− log− |x1 − x2|),

for any x1, x2 ∈ Rd, where C > 0 is independent of x1 and x2.

Remark 3.1. Lemma 3.2 implies ϕ ⋆ h satisfies the log-Lipschitz estimate since

|ϕ ⋆ h(x1)− ϕ ⋆ h(x2)| ≤
∫
Rd

|ϕ(x1 − y)− ϕ(x2 − y)||h(y)| dy

for any x1, x2 ∈ Rd.

Proof of Lemma 3.2. We split the proof into two cases.

• (Case A: |x1 − x2| ≥ 1) In this case, we observe

∫
Rd

|ϕ(x1 − y)− ϕ(x2 − y)||h(y)| dy

=

∫
Rd

∣∣∣∣( |x2 − y|d−1 − |x1 − y|d−1

|x1 − y|d−1|x2 − y|d−1

∣∣∣∣ |h(y)| dy)
≤ C

∫
Rd

(
|x1 − x2|

(
|x1 − y|d−2 + |x2 − y|d−2

)
|x1 − y|d−1|x2 − y|d−1

|h(y)| dy

)

= C|x1 − x2|
∫
Rd

(
1

|x1 − y|d−1|x2 − y|
+

1

|x2 − y|d−1|x1 − y|

)
|h(y)| dy.

Since |x1 − x2| ≥ 1, for y with |x1 − y| < 1
4 , we obtain |x2 − y| ≥ 3

4 . Conversely, for

y with |x2 − y| < 1
4 , we have |x1 − y| ≥ 3

4 . This yields∫
Rd

1

|x1 − y|d−1|x2 − y|
|h(y)| dy

=

(∫
{|x1−y|< 1

4}
+

∫
{|x2−y|< 1

4}
+

∫
{|x1−y|,|x2−y|≥ 1

4}

1

|x1 − y|d−1|x2 − y|
|h(y)| dy

)
≤ C∥h∥L1∩L∞ ,

and this gives the desired result since the other term can be handled similarly.
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• (Case B: |x1 − x2| < 1) We write r := |x1 − x2| for notational simplicity. Then,
we estimate the difference similarly as in [13]:∫

Rd

|ϕ(x1 − y)− ϕ(x2 − y)||h(y)| dx

=

(∫
{|x1−y|≥2}

+

∫
{2r<|x1−y|<2}

+

∫
{|x1−y|≤2r

)
∣∣∣∣ 1

|x1 − y|d−1
− 1

|x2 − y|d−1

∣∣∣∣ |h(y)| dy
=: I + II + III.

For I, since |x1 − x2| < 1, for y with |x1 − y| ≥ 2, we get |x2 − y| ≥ 1. Thus,
analogously to the Case A, we deduce

I ≤ C|x1 − x2|∥h∥L1∩L∞ .

For II, note that two functions |x1 − y|−d+1 and |x2 − y|−d+1 are smooth in y in
this region. Thus we use the mean value theorem to yield

II = −(d− 1)

∫
{2r<|x1−y|<2}

∣∣∣∣∫ 1

0

((x2 − y) + t(x1 − x2))

|(x2 − y) + t(x1 − x2)|d+1
· (x1 − x2) dt

∣∣∣∣ |h(y)| dy
≤ C

∫
{2r<|x1−y|<2}

|x1 − x2|
|x1 − y|d

|h(y)| dy

≤ C|x1 − x2|∥h∥L∞

∫ 2

2r

1

s
ds

= −C|x1 − x2| log |x1 − x2|,
where we used

|(x2 − y) + t(x1 − x2)| = |(x1 − y)− (1− t)(x1 − x2)|
≥ ||x1 − y| − |(1− t)|x1 − x2||

≥ |x1 − y|
2

.

For III, note that {y : |x1 − y| ≤ 2r} ⊆ {y : |x2 − y| ≤ 3r}. This gives

III ≤
∫
{|x1−y|≤2r}

1

|x1 − y|d−1
|h(y)| dy +

∫
{|x2−y|≤3r}

1

|x2 − y|d−1
|h(y)| dy

≤ C∥h∥L∞

(∫ 2r

0

+

∫ 3r

0

)
1 ds

≤ C∥h∥L∞ |x1 − x2|.
Combining all the above estimates concludes the desired inequality. □

Proof of Theorem 1.1: uniqueness in the case α = d− 1. For two solutions f1 and
f2 corresponding to initial data f in1 and f in2 , respectively, we separately consider
their characteristics: for i = 1, 2, Zi(t; s, z) := (Xi(t; s, z), Vi(t; s, z)), z := (x, v)
satisfies

d

dt
Xi(t; s, z) = Vi(t; s, z), t, s ∈ (0, T ),

d

dt
Vi(t; s, z) = (ϕ ⋆ mi)(Xi(t; s, z))− Vi(t; s, z)(ϕ ⋆ ρi)(Xi(t; s, z))
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subject to Zi(s; s, z) = z. To ensure that the above characteristics are well-defined,
one needs to check Osgood criterion, which tells that for a differential equation
ẏ = f(y) where f is continuous and

|f(x)− f(y)| ≤ ω(|x− y|), ω : continuous and nondecreasing,

∫ 1

0

1

ω(s)
ds = ∞,

ω(r) > 0 for all r > 0, ω(0) = 0, then it has a unique solution. In our case,
ϕ ⋆ mi and ϕ ⋆ ρi are log-Lipschitz continuous thanks to Lemma 3.2, and hence
the characteristics are well-defined. Note that fi, i = 1, 2 are compactly supported
in velocity, thus |ϕ ⋆ mi| ≤ Cϕ ⋆ ρi for some C > 0 which only depends on f ini
and d. Then, at some time t0 ∈ (0, T ), we choose an optimal transport T 0(z) :=
(T 0

x (z), T 0
v (z)), i.e.

f2(t0, ·) = T 0
#f1(t0, ·).

Here T 0
#f1(t0, ·) denotes the push-forward of f1 by a measurable map T 0. Then we

have

f2(t, ·) = T t
#f1(t, ·), T t := Z2(t; t0, z)#T 0

#Z1(t0; t, z). (3.2)

Here, we know that

d1(f1(t), f2(t)) ≤
∫∫

Rd×Rd

∣∣Z1(t; t0, z)− Z2(t; t0, T 0(z))
∣∣ f1(t0, z) dz.

Set

Q(t) :=

∫∫
Rd×Rd

∣∣Z1(t; t0, z)− Z2(t; t0, T 0(z))
∣∣ f1(t0, z) dz.

Then, we obtain

d

dt
Q(t)

∣∣∣∣
t=t+0

≤
∫∫

Rd×Rd

|V1(t; t0, z)− V2(t; t0, z)| f1(t, z) dz
∣∣∣∣
t=t+0

+

∫∫
Rd×Rd

|(ϕ ⋆ m1)(X1(t; t0, z))− (ϕ ⋆ m2)(X2(t; t0, z))| f1(t, z) dz
∣∣∣∣
t=t+0

+

∫∫
Rd×Rd

|V1(t; t0, z)(ϕ ⋆ ρ1)(X1(t; t0, z))

−V2(t; t0, z)(ϕ ⋆ ρ2)(X2(t; t0, z))| f1(t, z) dz
∣∣∣∣
t=t+0

=: I + II + III,

where I can be easily estimated as

I =

∫∫
Rd×Rd

∣∣v − T 0
v (z)

∣∣ f1(t0, z) dz ≤ d1(f1(t0), f2(t0)).

For II, we get

II ≤
∫∫

Rd×Rd

∣∣(ϕ ⋆ m1)(x)− (ϕ ⋆ m1)(T 0
x (z))

∣∣ f1(t0, z) dz
+

∫∫
Rd×Rd

∣∣(ϕ ⋆ m1)(T 0
x (z))− (ϕ ⋆ m2)(T 0

x (z))
∣∣ f1(t0, z) dz

=: II1 + II2.
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Here, Lemma 3.2 directly implies

II1 ≤ C

∫∫
Rd×Rd

|x− T 0
x (z)|(1− log− |x− T 0

x (z)|)f1(t0, z) dz,

where we used that f1 is compactly supported in velocity. We write φ1(r) :=
r(1− log− r) and φ2(r) = −r log r. Note that φ1(r) ≥ φ2(r) on r ∈ (0, 1) and φ1(r)
is nondecreasing on r > 0. Moreover, φ2(r) is concave on r < 1. Thus, by using
Jensen’s inequality,∫∫

Rd×Rd

|x− T 0
x (z)|(1− log− |x− T 0

x (z)|)f1(t0, z) dz

=

(∫∫
{|x−T 0

x (z)|≥1}
+

∫∫
{|x−T 0

x (z)|<1}

)
|x− T 0

x (z)|(1− log− |x− T 0
x (z)|)f1(t0, z) dz

≤
∫∫

{|x−T 0
x (z)|≥1}

|x− T 0
x (z)|f1(t0, z) dz

+ φ2

(∫∫
{|x−T 0

x (z)|<1}
|x− T 0

x (z)|f1(t0, z) dz

)

≤
∫∫

{|x−T 0
x (z)|≥1}

|x− T 0
x (z)|f1(t0, z) dz

+ φ1

(∫
{|x−T 0

x (z)|<1}
|x− T 0

x (z)|f1(t0, z) dz

)
≤ d1(f1(t0), f2(t0)) + φ1(d1(f1(t0), f2(t0)))

≤ Cd1(f1(t0), f2(t0))(1− log−(d1(f1(t0), f2(t0))).

This implies

II1 ≤ Cd1(f1(t0), f2(t0))(1− log−(d1(f1(t0), f2(t0))).

For II2, we use (3.2) and a simplified notation ẑ := (x̂, v̂) to estimate

II2 =

∫∫
Rd×Rd

∣∣∣∣ ∫∫
Rd×Rd

(
ϕ(T 0

x (z)− x̂)v̂ − ϕ(T 0
x (z)− T 0

x (ẑ))T 0
v (ẑ)

)
× f1(t0, ẑ) dẑ

∣∣∣∣ f1(t0, z) dz
≤
∫∫∫∫

R2d×R2d

|ϕ(x− x̂)v̂ − ϕ(x− T 0
x (ẑ))T 0

v (ẑ)|f1(t0, ẑ)f2(t0, z) dẑdz

≤
∫∫

Rd×Rd

(∫
Rd

|ϕ(x̂− x)− ϕ(T 0
x (ẑ)− x)|ρ2(t0, x) dx

)
|v̂|f1(t0, ẑ) dẑ

+

∫∫
Rd×Rd

(∫
Rd

ϕ(T 0
x (ẑ)− x)ρ2(t0, x) dx

)
|v̂ − T 0

v (ẑ)|f1(t0, ẑ) dẑ.

We then use the similar arguments employed in Lemma 3.2 to yield

II2 ≤ C

∫∫
Rd×Rd

|x̂− T 0
x (ẑ)|(1− log− |x̂− T 0

x (ẑ)|)f1(t0, ẑ) dẑ
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+ C∥ϕ ⋆ ρ2∥L∞

∫∫
Rd×Rd

|v̂ − T 0
v (ẑ)|f1(t0, ẑ) dẑ

≤ Cd1(f1(t0), f2(t0))(1− log−(d1(f1(t0), f2(t0)))).

For III, we estimate

III =

∫∫
Rd×Rd

∣∣vϕ ⋆ ρ1(x)− T 0
v (z)(ϕ ⋆ ρ2)(T 0

x (z))
∣∣ f1(t0, z) dz

≤
∫∫

Rd×Rd

∣∣ϕ ⋆ ρ1(x)− (ϕ ⋆ ρ2)(T 0
x (z))

∣∣ |v|f1(t0, z) dxdv
+

∫∫
Rd×Rd

(ϕ ⋆ ρ2)(T 0
x (z))|v − T 0

v (z)|f1(t0, z) dz

=: III1 + III2.

We can use the similar arguments for II2 to yield

III1 ≤ Cd1(f1(t0), f2(t0))(1− log−(d1(f1(t0), f2(t0)))).

We also directly have
III2 ≤ Cd1(f1(t0), f2(t0)).

Therefore, we combine all the estimates for I, II, and III to get

d

dt
Q(t)

∣∣∣∣
t=t+0

≤ Cd1(f1(t0), f2(t0))
(
1− log−(d1(f1(t0), f2(t0)))

)
.

This completes the proof. □
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