Asymptotic behavior of an integral equation of Allen-Cahn type
Author:
Yutian Lei
Journal:
Quart. Appl. Math.
MSC (2020):
Primary 45M05; Secondary 45G05, 35J92, 35Q56
DOI:
https://doi.org/10.1090/qam/1702
Published electronically:
January 9, 2025
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this paper, we are concerned with the asymptotic behavior of solutions of an integral equation of the Allen-Cahn type \begin{equation*} u(x)=\overrightarrow {l} +K(x)W_{\beta ,p}[u|u|^{q_1-2}(1-|u|^{q_1})|1-|u|^{q_1}|^{q_2-2}](x) \end{equation*} when $|x| \to \infty$. Here $u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}^k$ is uniformly continuous, and $k \geq 1$, $n \geq 2$, $p>1$, $\beta >0$, $p\beta <n$, and $\min \{q_1, q_2\} >2$. In addition, $\overrightarrow {l} \in {\mathbb {R}}^k$ is a constant vector and $K(x)$ is a nonnegative bounded function. We prove that if $u$ or $1-|u|^{q_1}$ has some integrability, then $|\overrightarrow {l}| \in \{0,1\}$ and $u \to \overrightarrow {l}$ when $|x| \to \infty$. Moreover, if $u$ or $1-|u|^{q_1}$ has some better integrability, then $| |u(x)|-|\overrightarrow {l}| |=O(|x|^{(p\beta -n)/(p-1)})$ when $|x| \to \infty$. Here a regularity lifting lemma comes into play in the proof.
References
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, Global minimizers for a $p$-Ginzburg-Landau-type energy in $\Bbb R^2$, J. Funct. Anal. 256 (2009), no. 7, 2268–2290. MR 2498765, DOI 10.1016/j.jfa.2008.09.020
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, Radially symmetric minimizers for a $p$-Ginzburg Landau type energy in $\Bbb R^2$, Calc. Var. Partial Differential Equations 42 (2011), no. 3-4, 517–546. MR 2846265, DOI 10.1007/s00526-011-0396-9
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, On the limit $p\to \infty$ of global minimizers for a $p$-Ginzburg-Landau-type energy, Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013), no. 6, 1159–1174. MR 3132420, DOI 10.1016/j.anihpc.2012.12.013
- Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1269538, DOI 10.1007/978-1-4612-0287-5
- Haïm Brezis, Frank Merle, and Tristan Rivière, Quantization effects for $-\Delta u=u(1-|u|^2)$ in $\textbf {R}^2$, Arch. Rational Mech. Anal. 126 (1994), no. 1, 35–58. MR 1268048, DOI 10.1007/BF00375695
- Qinghua Chen and Yutian Lei, Asymptotic estimates for an integral equation in theory of phase transition, Nonlinearity 34 (2021), no. 6, 3953–3968. MR 4281438, DOI 10.1088/1361-6544/abffe1
- Qinghua Chen and Yutian Lei, Regularity and Liouville theorem on an integral equation of Allen-Cahn type, Discrete Contin. Dyn. Syst. 45 (2025), no. 1, 37–55. MR 4795536, DOI 10.3934/dcds.2024085
- Wenxiong Chen, Chao Jin, Congming Li, and Jisun Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, Discrete Contin. Dyn. Syst. suppl. (2005), 164–172. MR 2192671
- Wenxiong Chen and Congming Li, Methods on nonlinear elliptic equations, AIMS Series on Differential Equations & Dynamical Systems, vol. 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010. MR 2759774
- Wenxiong Chen and Congming Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst. 30 (2011), no. 4, 1083–1093. MR 2812954, DOI 10.3934/dcds.2011.30.1083
- Wenxiong Chen, Congming Li, and Biao Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343. MR 2200258, DOI 10.1002/cpa.20116
- Yun Mei Chen, Min Chun Hong, and Norbert Hungerbühler, Heat flow of $p$-harmonic maps with values into spheres, Math. Z. 215 (1994), no. 1, 25–35. MR 1254812, DOI 10.1007/BF02571698
- Lipeng Duan and Jun Yang, Symmetric vortices for two-component $p$-Ginzburg-Landau systems, J. Math. Anal. Appl. 491 (2020), no. 2, 124347, 16. MR 4122069, DOI 10.1016/j.jmaa.2020.124347
- L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526, DOI 10.5802/aif.944
- Chao Jin and Congming Li, Quantitative analysis of some system of integral equations, Calc. Var. Partial Differential Equations 26 (2006), no. 4, 447–457. MR 2235882, DOI 10.1007/s00526-006-0013-5
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI 10.1007/BF02392793
- Yutian Lei, Asymptotic estimation for a $p$-Ginzburg-Landau type minimizer in higher dimensions, Pacific J. Math. 226 (2006), no. 1, 103–135. MR 2247858, DOI 10.2140/pjm.2006.226.103
- Yutian Lei, Energy concentration properties of a $p$-Ginzburg-Landau model, Nagoya Math. J. 247 (2022), 494–515. MR 4480091, DOI 10.1017/nmj.2021.10
- Yutian Lei, Congming Li, and Chao Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 547–558. MR 2772129, DOI 10.3934/dcds.2011.30.547
- Yayun Li, Qinghua Chen, and Yutian Lei, A Liouville theorem for the fractional Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris 358 (2020), no. 6, 727–731. MR 4157906, DOI 10.5802/crmath.91
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- Fang-Hua Lin, Static and moving vortices in Ginzburg-Landau theories, Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995) Progr. Nonlinear Differential Equations Appl., vol. 29, Birkhäuser, Basel, 1997, pp. 71–111. MR 1437152
- Chao Ma, Wenxiong Chen, and Congming Li, Regularity of solutions for an integral system of Wolff type, Adv. Math. 226 (2011), no. 3, 2676–2699. MR 2739789, DOI 10.1016/j.aim.2010.07.020
- Vincent Millot and Yannick Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal. 215 (2015), no. 1, 125–210. MR 3296146, DOI 10.1007/s00205-014-0776-3
- A. V. Milovanov and J. Juul Rasmussen, Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Phys. Lett. A, 337 (2005), 75–80.
- Frank Pacard and Tristan Rivière, Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 39, Birkhäuser Boston, Inc., Boston, MA, 2000. The Ginzburg-Landau model. MR 1763040, DOI 10.1007/978-1-4612-1386-4
- Nguyen Cong Phuc and Igor E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math. (2) 168 (2008), no. 3, 859–914. MR 2456885, DOI 10.4007/annals.2008.168.859
- James Serrin and Henghui Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), no. 1, 79–142. MR 1946918, DOI 10.1007/BF02392645
- V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Phys. A, 354 (2005), 249–261.
- Changyou Wang, Limits of solutions to the generalized Ginzburg-Landau functional, Comm. Partial Differential Equations 27 (2002), no. 5-6, 877–906. MR 1916551, DOI 10.1081/PDE-120004888
- Zexin Zhang and Zhitao Zhang, Integrability, regularity and symmetry of positive integrable solutions for Wolff type integral systems, J. Differential Equations 357 (2023), 275–301. MR 4548998, DOI 10.1016/j.jde.2023.02.010
References
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, Global minimizers for a $p$-Ginzburg-Landau-type energy in $\mathbb {R}^2$, J. Funct. Anal. 256 (2009), no. 7, 2268–2290. MR 2498765, DOI 10.1016/j.jfa.2008.09.020
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, Radially symmetric minimizers for a $p$-Ginzburg Landau type energy in $\mathbb {R}^2$, Calc. Var. Partial Differential Equations 42 (2011), no. 3-4, 517–546. MR 2846265, DOI 10.1007/s00526-011-0396-9
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, On the limit $p\to \infty$ of global minimizers for a $p$-Ginzburg-Landau-type energy, Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013), no. 6, 1159–1174. MR 3132420, DOI 10.1016/j.anihpc.2012.12.013
- Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1269538, DOI 10.1007/978-1-4612-0287-5
- Haïm Brezis, Frank Merle, and Tristan Rivière, Quantization effects for $-\Delta u=u(1-|u|^2)$ in $\mathbf {R}^2$, Arch. Rational Mech. Anal. 126 (1994), no. 1, 35–58. MR 1268048, DOI 10.1007/BF00375695
- Qinghua Chen and Yutian Lei, Asymptotic estimates for an integral equation in theory of phase transition, Nonlinearity 34 (2021), no. 6, 3953–3968. MR 4281438, DOI 10.1088/1361-6544/abffe1
- Qinghua Chen and Yutian Lei, Regularity and Liouville theorem on an integral equation of Allen-Cahn type, Discrete Contin. Dyn. Syst. 45 (2025), no. 1, 37–55. MR 4795536, DOI 10.3934/dcds.2024085
- Wenxiong Chen, Chao Jin, Congming Li, and Jisun Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, Discrete Contin. Dyn. Syst. suppl (2005), 164–172. MR 2192671
- Wenxiong Chen and Congming Li, Methods on nonlinear elliptic equations, AIMS Series on Differential Equations & Dynamical Systems, vol. 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010. MR 2759774
- Wenxiong Chen and Congming Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst. 30 (2011), no. 4, 1083–1093. MR 2812954, DOI 10.3934/dcds.2011.30.1083
- Wenxiong Chen, Congming Li, and Biao Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343. MR 2200258, DOI 10.1002/cpa.20116
- Yun Mei Chen, Min Chun Hong, and Norbert Hungerbühler, Heat flow of $p$-harmonic maps with values into spheres, Math. Z. 215 (1994), no. 1, 25–35. MR 1254812, DOI 10.1007/BF02571698
- Lipeng Duan and Jun Yang, Symmetric vortices for two-component $p$-Ginzburg-Landau systems, J. Math. Anal. Appl. 491 (2020), no. 2, 124347, 16. MR 4122069, DOI 10.1016/j.jmaa.2020.124347
- L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526, DOI 10.5802/aif.944
- Chao Jin and Congming Li, Quantitative analysis of some system of integral equations, Calc. Var. Partial Differential Equations 26 (2006), no. 4, 447–457. MR 2235882, DOI 10.1007/s00526-006-0013-5
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI 10.1007/BF02392793
- Yutian Lei, Asymptotic estimation for a $p$-Ginzburg-Landau type minimizer in higher dimensions, Pacific J. Math. 226 (2006), no. 1, 103–135. MR 2247858, DOI 10.2140/pjm.2006.226.103
- Yutian Lei, Energy concentration properties of a $p$-Ginzburg-Landau model, Nagoya Math. J. 247 (2022), 494–515. MR 4480091, DOI 10.1017/nmj.2021.10
- Yutian Lei, Congming Li, and Chao Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 547–558. MR 2772129, DOI 10.3934/dcds.2011.30.547
- Yayun Li, Qinghua Chen, and Yutian Lei, A Liouville theorem for the fractional Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris 358 (2020), no. 6, 727–731. MR 4157906, DOI 10.5802/crmath.91
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- Fang-Hua Lin, Static and moving vortices in Ginzburg-Landau theories, Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995) Progr. Nonlinear Differential Equations Appl., vol. 29, Birkhäuser, Basel, 1997, pp. 71–111. MR 1437152
- Chao Ma, Wenxiong Chen, and Congming Li, Regularity of solutions for an integral system of Wolff type, Adv. Math. 226 (2011), no. 3, 2676–2699. MR 2739789, DOI 10.1016/j.aim.2010.07.020
- Vincent Millot and Yannick Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal. 215 (2015), no. 1, 125–210. MR 3296146, DOI 10.1007/s00205-014-0776-3
- A. V. Milovanov and J. Juul Rasmussen, Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Phys. Lett. A, 337 (2005), 75–80.
- Frank Pacard and Tristan Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 39, Birkhäuser Boston, Inc., Boston, MA, 2000. MR 1763040, DOI 10.1007/978-1-4612-1386-4
- Nguyen Cong Phuc and Igor E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math. (2) 168 (2008), no. 3, 859–914. MR 2456885, DOI 10.4007/annals.2008.168.859
- James Serrin and Henghui Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), no. 1, 79–142. MR 1946918, DOI 10.1007/BF02392645
- V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Phys. A, 354 (2005), 249–261.
- Changyou Wang, Limits of solutions to the generalized Ginzburg-Landau functional, Comm. Partial Differential Equations 27 (2002), no. 5-6, 877–906. MR 1916551, DOI 10.1081/PDE-120004888
- Zexin Zhang and Zhitao Zhang, Integrability, regularity and symmetry of positive integrable solutions for Wolff type integral systems, J. Differential Equations 357 (2023), 275–301. MR 4548998, DOI 10.1016/j.jde.2023.02.010
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
45M05,
45G05,
35J92,
35Q56
Retrieve articles in all journals
with MSC (2020):
45M05,
45G05,
35J92,
35Q56
Additional Information
Yutian Lei
Affiliation:
Ministry of Education Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, People’s Republic of China
Email:
leiyutian@njnu.edu.cn
Keywords:
Allen-Cahn equation,
integral equation,
Wolff potential,
asymptotic rate
Received by editor(s):
November 18, 2024
Received by editor(s) in revised form:
December 9, 2024
Published electronically:
January 9, 2025
Additional Notes:
This work was supported by the Natural Science Foundation of Jiangsu (No. BK20241878).
Article copyright:
© Copyright 2025
Brown University