On the analyticity of the flow map for the AHT equations
Authors:
Amina Mecherbet and Franck Sueur
Journal:
Quart. Appl. Math.
MSC (2020):
Primary 35A20, 35Q49; Secondary 49Q22
DOI:
https://doi.org/10.1090/qam/1713
Published electronically:
April 23, 2025
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: The AHT equation is a nonlinear and nonlocal vectorial transport equation which was introduced by Angenent, Haker, and Tannenbaum [SIAM J. Math. Anal. 35 (2003), pp. 61–97] in optimal transport theory. For this equation, classical solutions are known to exist at least locally in time, and a flow map can thus be uniquely associated with these solutions. In this paper we consider the case where the equation is set in a bounded domain with an analytic boundary and we prove that the flow map is analytic with respect to time.
References
- Sigurd Angenent, Steven Haker, and Allen Tannenbaum, Minimizing flows for the Monge-Kantorovich problem, SIAM J. Math. Anal. 35 (2003), no. 1, 61–97. MR 2001465, DOI 10.1137/S0036141002410927
- Nicolas Besse, Regularity of the geodesic flow of the incompressible Euler equations on a manifold, Comm. Math. Phys. 375 (2020), no. 3, 2155–2189. MR 4091505, DOI 10.1007/s00220-019-03656-5
- Yann Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), no. 4, 375–417. MR 1100809, DOI 10.1002/cpa.3160440402
- Yann Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci. 19 (2009), no. 5, 547–570. MR 2540168, DOI 10.1007/s00332-009-9044-3
- J.-Y. Chemin, Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl. (9) 71 (1992), no. 5, 407–417 (French, with English and French summaries). MR 1191582
- Jean-Yves Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995), 177 (French, with French summary). MR 1340046
- Peter Constantin, Vlad Vicol, and Jiahong Wu, Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models, Adv. Math. 285 (2015), 352–393. MR 3406503, DOI 10.1016/j.aim.2015.05.019
- Theodore D. Drivas and Tarek M. Elgindi, Singularity formation in the incompressible Euler equation in finite and infinite time, EMS Surv. Math. Sci. 10 (2023), no. 1, 1–100. MR 4667415, DOI 10.4171/emss/66
- P. Gamblin, Système d’Euler incompressible et régularité microlocale analytique, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École Polytech., Palaiseau, 1993, pp. Exp. No. XX, 11 (French). MR 1240561
- Pascal Gamblin, Système d’Euler incompressible et régularité microlocale analytique, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 5, 1449–1475 (French, with English and French summaries). MR 1313791, DOI 10.5802/aif.1441
- Olivier Glass, Franck Sueur, and Takéo Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 1, 1–51 (English, with English and French summaries). MR 2961786, DOI 10.24033/asens.2159
- Matthew Hernandez, Mechanisms of Lagrangian analyticity in fluids, Arch. Ration. Mech. Anal. 233 (2019), no. 2, 513–598. MR 3951688, DOI 10.1007/s00205-019-01363-y
- Hasan Inci, On a Lagrangian formulation of the incompressible Euler equation, J. Partial Differ. Equ. 29 (2016), no. 4, 320–359. MR 3643798, DOI 10.4208/jpde.v29.n4.5
- T. Kato, On the smoothness of trajectories in incompressible perfect, in Nonlinear Wave Equations: A Conference in Honor of Walter A. Strauss on the Occasion of His Sixtieth Birthday, May 2–3, 1998, Brown University, vol. 263, American Mathematical Society, Providence, RI, 2000, p. 109.
- Huy Q. Nguyen and Toan T. Nguyen, On global stability of optimal rearrangement maps, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 671–704. MR 4134149, DOI 10.1007/s00205-020-01552-0
- Franck Sueur, Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain, J. Differential Equations 251 (2011), no. 12, 3421–3449. MR 2837690, DOI 10.1016/j.jde.2011.07.035
- Vladislav Zheligovsky and Uriel Frisch, Time-analyticity of Lagrangian particle trajectories in ideal fluid flow, J. Fluid Mech. 749 (2014), 404–430. MR 3216577, DOI 10.1017/jfm.2014.221
References
- Sigurd Angenent, Steven Haker, and Allen Tannenbaum, Minimizing flows for the Monge-Kantorovich problem, SIAM J. Math. Anal. 35 (2003), no. 1, 61–97. MR 2001465, DOI 10.1137/S0036141002410927
- Nicolas Besse, Regularity of the geodesic flow of the incompressible Euler equations on a manifold, Comm. Math. Phys. 375 (2020), no. 3, 2155–2189. MR 4091505, DOI 10.1007/s00220-019-03656-5
- Yann Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), no. 4, 375–417. MR 1100809, DOI 10.1002/cpa.3160440402
- Yann Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci. 19 (2009), no. 5, 547–570. MR 2540168, DOI 10.1007/s00332-009-9044-3
- J.-Y. Chemin, Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl. (9) 71 (1992), no. 5, 407–417 (French, with English and French summaries). MR 1191582
- Jean-Yves Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995), 177 (French, with French summary). MR 1340046
- Peter Constantin, Vlad Vicol, and Jiahong Wu, Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models, Adv. Math. 285 (2015), 352–393. MR 3406503, DOI 10.1016/j.aim.2015.05.019
- Theodore D. Drivas and Tarek M. Elgindi, Singularity formation in the incompressible Euler equation in finite and infinite time, EMS Surv. Math. Sci. 10 (2023), no. 1, 1–100. MR 4667415, DOI 10.4171/emss/66
- P. Gamblin, Système d’Euler incompressible et régularité microlocale analytique, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École Polytech., Palaiseau, 1993, pp. Exp. No. XX, 11 (French). MR 1240561
- Pascal Gamblin, Système d’Euler incompressible et régularité microlocale analytique, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 5, 1449–1475 (French, with English and French summaries). MR 1313791, DOI 10.5802/aif.1441
- Olivier Glass, Franck Sueur, and Takéo Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 1, 1–51 (English, with English and French summaries). MR 2961786, DOI 10.24033/asens.2159
- Matthew Hernandez, Mechanisms of Lagrangian analyticity in fluids, Arch. Ration. Mech. Anal. 233 (2019), no. 2, 513–598. MR 3951688, DOI 10.1007/s00205-019-01363-y
- Hasan Inci, On a Lagrangian formulation of the incompressible Euler equation, J. Partial Differ. Equ. 29 (2016), no. 4, 320–359. MR 3643798, DOI 10.4208/jpde.v29.n4.5
- T. Kato, On the smoothness of trajectories in incompressible perfect, in Nonlinear Wave Equations: A Conference in Honor of Walter A. Strauss on the Occasion of His Sixtieth Birthday, May 2–3, 1998, Brown University, vol. 263, American Mathematical Society, Providence, RI, 2000, p. 109.
- Huy Q. Nguyen and Toan T. Nguyen, On global stability of optimal rearrangement maps, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 671–704. MR 4134149, DOI 10.1007/s00205-020-01552-0
- Franck Sueur, Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain, J. Differential Equations 251 (2011), no. 12, 3421–3449. MR 2837690, DOI 10.1016/j.jde.2011.07.035
- Vladislav Zheligovsky and Uriel Frisch, Time-analyticity of Lagrangian particle trajectories in ideal fluid flow, J. Fluid Mech. 749 (2014), 404–430. MR 3216577, DOI 10.1017/jfm.2014.221
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35A20,
35Q49,
49Q22
Retrieve articles in all journals
with MSC (2020):
35A20,
35Q49,
49Q22
Additional Information
Amina Mecherbet
Affiliation:
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Cité, 8 Place Aurélie Nemours, F75205 Paris Cedex 13, France
MR Author ID:
1346375
Email:
mecherbet@imj-prg.fr
Franck Sueur
Affiliation:
Department of Mathematics, Maison du nombre, 6 avenue de la Fonte, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
MR Author ID:
767819
Email:
Franck.Sueur@uni.lu
Keywords:
Analyticity in context of PDEs,
nonlinear nonlocal transport equations,
Optimal transportation
Received by editor(s):
December 22, 2024
Received by editor(s) in revised form:
March 14, 2025
Published electronically:
April 23, 2025
Additional Notes:
Both authors were partially supported by the Agence Nationale de la Recherche, Project SUSPENSIONS, grant ANR-24-CE92-0028-01. The second author was partially supported by the Agence Nationale de la Recherche, Project BOURGEONS, grant ANR-23-CE40-0014-01.
Article copyright:
© Copyright 2025
Brown University