Regime-dependent infection propagation fronts in an SIS model
Authors:
Anna Ghazaryan, Vahagn Manukian, Jonathan Waldmann and Priscilla Yinzime
Journal:
Quart. Appl. Math.
MSC (2020):
Primary 92D25, 35B25, 35K57, 35B36
DOI:
https://doi.org/10.1090/qam/1714
Published electronically:
April 21, 2025
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We show the existence of traveling front solutions in a diffusive classical SIS epidemic model and the SIS model with a saturating incidence in the size of the susceptible population. We investigate the situation where both susceptible and infected populations move around at a comparable rate, but small compared to the spatial scale. In this case, we show that traveling front solutions exist for each fixed positive speed. In the regime where the infected population diffuses slower than the susceptible population, we show the existence of traveling wave solutions for each fixed positive speed and describe their structure and dependence on the wave speed as it is varied from 0 to $\infty$. In the regime where the infected population diffuses faster than the susceptible population, we derive a bound for the speeds of the fronts in this regime in which the infection propagates as a front. Moreover, for the classical SIS model we show that there is a case when the spread of the disease is governed by the Burgers-FKPP equation.
References
- J. An, C. Henderson, and L. Ryzhik, Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation, 2023.
- R. M. Anderson and R. M. May, Regulation and stability of host-parasite population interactions: I. Regulatory processes, J. Anim. Ecol. 47 (1978), 219–247.
- Fred Brauer and Carlos Castillo-Chávez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics, vol. 40, Springer-Verlag, New York, 2001. MR 1822695, DOI 10.1007/978-1-4757-3516-1
- K. P. Hadeler, T. Hillen, and M. A. Lewis, Biological modeling with quiescent phases spatial ecology, Spatial ecology, edited by S. Cantrell, Ch. Cosner, and Sh. Ruan, Chapman & Hall, CRC Mathematical Biology Series, 2009, pp. 102–227.
- Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/72), 193–226. MR 287106, DOI 10.1512/iumj.1971.21.21017
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- A. R. Ghazaryan, S. Lafortune, and V. Manukian, Introduction to traveling waves, Chapman and Hall/CRC, 2022.
- Yuzo Hosono and Bilal Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci. 5 (1995), no. 7, 935–966. MR 1359215, DOI 10.1142/S0218202595000504
- Christopher K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc. 286 (1984), no. 2, 431–469. MR 760971, DOI 10.1090/S0002-9947-1984-0760971-6
- W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics–I, reprinted from the Proceedings of the Royal Society, Vol. 115A, pp. 700–721 (1927) with the permission of The Royal Society, Bull. Math. Biol. 53 (1991), 33–55.
- Christian Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, vol. 191, Springer, Cham, 2015. MR 3309627, DOI 10.1007/978-3-319-12316-5
- Ellen Kuhl, Computational epidemiology—data-driven modeling of COVID-19, Springer, Cham, [2021] ©2021. With a foreword by Alain Goriely. MR 4419306, DOI 10.1007/978-3-030-82890-5
- P. Lopes, P. Block, and B. König, Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks, Sci. Rep. 6 (2016), 31790.
- Marlon M. López-Flores, Dan Marchesin, Vítor Matos, and Stephen Schecter, Differential equation models in epidemiology, 33 $^\textrm {o}$ Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2021. MR 4472814
- Manjun Ma and Chunhua Ou, The minimal wave speed of a general reaction-diffusion equation with nonlinear advection, Z. Angew. Math. Phys. 72 (2021), no. 4, Paper No. 163, 14. MR 4293975, DOI 10.1007/s00033-021-01588-6
- M. B. A. Mansour, Traveling wave solutions for the extended Fisher/KPP equation, Rep. Math. Phys. 66 (2010), no. 3, 375–383. MR 2796705, DOI 10.1016/S0034-4877(10)80009-6
- Maia Martcheva, An introduction to mathematical epidemiology, Texts in Applied Mathematics, vol. 61, Springer, New York, 2015. MR 3409181, DOI 10.1007/978-1-4899-7612-3
- J. D. Murray, Mathematical biology, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1989. MR 1007836, DOI 10.1007/978-3-662-08539-4
- L. M. Perko, Rotated vector fields, J. Differential Equations 103 (1993), no. 1, 127–145. MR 1218741, DOI 10.1006/jdeq.1993.1044
- P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations 92 (1991), no. 2, 252–281. MR 1120905, DOI 10.1016/0022-0396(91)90049-F
- Jack Xin, An introduction to fronts in random media, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 5, Springer, New York, 2009. MR 2527020, DOI 10.1007/978-0-387-87683-2
References
- J. An, C. Henderson, and L. Ryzhik, Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation, 2023.
- R. M. Anderson and R. M. May, Regulation and stability of host-parasite population interactions: I. Regulatory processes, J. Anim. Ecol. 47 (1978), 219–247.
- Fred Brauer and Carlos Castillo-Chávez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics, vol. 40, Springer-Verlag, New York, 2001. MR 1822695, DOI 10.1007/978-1-4757-3516-1
- K. P. Hadeler, T. Hillen, and M. A. Lewis, Biological modeling with quiescent phases spatial ecology, Spatial ecology, edited by S. Cantrell, Ch. Cosner, and Sh. Ruan, Chapman & Hall, CRC Mathematical Biology Series, 2009, pp. 102–227.
- Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/72), 193–226. MR 287106, DOI 10.1512/iumj.1971.21.21017
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- A. R. Ghazaryan, S. Lafortune, and V. Manukian, Introduction to traveling waves, Chapman and Hall/CRC, 2022.
- Yuzo Hosono and Bilal Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci. 5 (1995), no. 7, 935–966. MR 1359215, DOI 10.1142/S0218202595000504
- Christopher K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc. 286 (1984), no. 2, 431–469. MR 760971, DOI 10.2307/1999806
- W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics–I, reprinted from the Proceedings of the Royal Society, Vol. 115A, pp. 700–721 (1927) with the permission of The Royal Society, Bull. Math. Biol. 53 (1991), 33–55.
- Christian Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, vol. 191, Springer, Cham, 2015. MR 3309627, DOI 10.1007/978-3-319-12316-5
- Ellen Kuhl, Computational epidemiology—data-driven modeling of COVID-19, with a foreword by Alain Goriely, Springer, Cham, 2021. MR 4419306, DOI 10.1007/978-3-030-82890-5
- P. Lopes, P. Block, and B. König, Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks, Sci. Rep. 6 (2016), 31790.
- Marlon M. López-Flores, Dan Marchesin, Vítor Matos, and Stephen Schecter, Differential equation models in epidemiology, Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2021. MR 4472814
- Manjun Ma and Chunhua Ou, The minimal wave speed of a general reaction-diffusion equation with nonlinear advection, Z. Angew. Math. Phys. 72 (2021), no. 4, Paper No. 163, 14. MR 4293975, DOI 10.1007/s00033-021-01588-6
- M. B. A. Mansour, Traveling wave solutions for the extended Fisher/KPP equation, Rep. Math. Phys. 66 (2010), no. 3, 375–383. MR 2796705, DOI 10.1016/S0034-4877(10)80009-6
- Maia Martcheva, An introduction to mathematical epidemiology, Texts in Applied Mathematics, vol. 61, Springer, New York, 2015. MR 3409181, DOI 10.1007/978-1-4899-7612-3
- J. D. Murray, Mathematical biology, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1989. MR 1007836, DOI 10.1007/978-3-662-08539-4
- L. M. Perko, Rotated vector fields, J. Differential Equations 103 (1993), no. 1, 127–145. MR 1218741, DOI 10.1006/jdeq.1993.1044
- P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations 92 (1991), no. 2, 252–281. MR 1120905, DOI 10.1016/0022-0396(91)90049-F
- Jack Xin, An introduction to fronts in random media, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 5, Springer, New York, 2009. MR 2527020, DOI 10.1007/978-0-387-87683-2
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
92D25,
35B25,
35K57,
35B36
Retrieve articles in all journals
with MSC (2020):
92D25,
35B25,
35K57,
35B36
Additional Information
Anna Ghazaryan
Affiliation:
Department of Mathematics, Miami University, Oxford, Ohio 45056
MR Author ID:
817431
ORCID:
0000-0003-1637-7120
Vahagn Manukian
Affiliation:
Department of Mathematical and Physical Sciences, Miami University, Hamilton, Ohio 45011
MR Author ID:
858808
Email:
manukive@miamioh.edu
Jonathan Waldmann
Affiliation:
Department of Mathematics, Miami University, Oxford, Ohio 45056
Priscilla Yinzime
Affiliation:
Department of Mathematics, Miami University, Oxford, Ohio 45056
Keywords:
Traveling fronts,
compartmental model,
SIS,
Burgers-FKPP equation,
geometric singular perturbation theory,
Fenichel Theory,
heteroclinic orbit
Received by editor(s):
December 29, 2024
Received by editor(s) in revised form:
March 9, 2025
Published electronically:
April 21, 2025
Additional Notes:
Vahagn Manukian is the corresponding author.
Article copyright:
© Copyright 2025
Brown University