Global existence for a nonlocal multi-species aggregation-diffusion equation
Authors:
Elaine Cozzi and Zachary Radke
Journal:
Quart. Appl. Math.
MSC (2020):
Primary 35A01
DOI:
https://doi.org/10.1090/qam/1717
Published electronically:
June 10, 2025
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider the question of global existence of smooth solutions to a multi-species aggregation-diffusion equation for a class of singular interaction kernels. We establish a smallness condition on the initial data which yields global existence of smooth solutions. We also give conditions on the species interaction which ensure that pointwise inequalities comparing species densities are preserved by the evolution.
References
- T. Arbogast and J. L. Bona, Methods of applied mathematics, University of Texas at Austin, Austin, TX 2008.
- Jacob Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models, Commun. Math. Sci. 9 (2011), no. 4, 1143–1161. MR 2901821, DOI 10.4310/CMS.2011.v9.n4.a11
- Jacob Bedrossian, Nancy Rodríguez, and Andrea L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity 24 (2011), no. 6, 1683–1714. MR 2793895, DOI 10.1088/0951-7715/24/6/001
- Katy Craig and Andrea L. Bertozzi, A blob method for the aggregation equation, Math. Comp. 85 (2016), no. 300, 1681–1717. MR 3471104, DOI 10.1090/mcom3033
- Adrien Blanchet, Jean Dolbeault, and Benoît Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations (2006), No. 44, 32. MR 2226917
- A. Buttenscho and T. Hillen, Non-local cell adhesion models, Springer, 2021.
- José A. Carrillo, Katy Craig, and Yao Yao, Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, Active particles. Vol. 2. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019, pp. 65–108. MR 3932458
- J. A. Carrillo, S. Guo, and A. Holzinger, Propagation of chaos for multi-species moderately interacting particle systems up to Newtonian singularity, arXiv:2501.03087, 2025.
- J. A. Carrillo, Y. Salmaniw, and J. Skrzeczkowski, Well-posedness of aggregation-diffusion systems with irregular kernels, arXiv:2406.09227, 2024.
- J.-Y. Chemin, Perfect incompressible fluids, No. 14, Oxford University Press, 1998.
- Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511–528. MR 2084005, DOI 10.1007/s00220-004-1055-1
- Valeria Giunta, Thomas Hillen, Mark Lewis, and Jonathan R. Potts, Local and global existence for nonlocal multispecies advection-diffusion models, SIAM J. Appl. Dyn. Syst. 21 (2022), no. 3, 1686–1708. MR 4447423, DOI 10.1137/21M1425992
- V. Giunta, T. Hillen, M. A. Lewis, and J. R. Potts, Positivity and global existence for nonlocal advection-diffusion models of interacting populations, arXiv:2312.09692, 2023.
- T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), no. 1-2, 183–217. MR 2448428, DOI 10.1007/s00285-008-0201-3
- Dirk Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103–165. MR 2013508
- Francois James and Nicolas Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM J. Numer. Anal. 53 (2015), no. 2, 895–916. MR 3327358, DOI 10.1137/140959997
- Ansgar Jüngel, Stefan Portisch, and Antoine Zurek, Nonlocal cross-diffusion systems for multi-species populations and networks, Nonlinear Anal. 219 (2022), Paper No. 112800, 26. MR 4379345, DOI 10.1016/j.na.2022.112800
- E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol. 30 1971, no. 2, 225–234.
- Dong Li and José L. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Rev. Mat. Iberoam. 26 (2010), no. 1, 261–294. MR 2666315, DOI 10.4171/RMI/601
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- Kevin J. Painter, Thomas Hillen, and Jonathan R. Potts, Biological modeling with nonlocal advection-diffusion equations, Math. Models Methods Appl. Sci. 34 (2024), no. 1, 57–107. MR 4683281, DOI 10.1142/S0218202524400025
- Benoît Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. MR 2270822
- Hao Wang and Yurij Salmaniw, Open problems in PDE models for knowledge-based animal movement via nonlocal perception and cognitive mapping, J. Math. Biol. 86 (2023), no. 5, Paper No. 71, 69. MR 4572130, DOI 10.1007/s00285-023-01905-9
- Pablo Raúl Stinga, User’s guide to the fractional Laplacian and the method of semigroups, Handbook of fractional calculus with applications. Vol. 2, De Gruyter, Berlin, 2019, pp. 235–265. MR 3965397
- Jiahong Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations (2001), No. 56, 13. MR 1846672
References
- T. Arbogast and J. L. Bona, Methods of applied mathematics, University of Texas at Austin, Austin, TX 2008.
- Jacob Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models, Commun. Math. Sci. 9 (2011), no. 4, 1143–1161. MR 2901821, DOI 10.4310/CMS.2011.v9.n4.a11
- Jacob Bedrossian, Nancy Rodríguez, and Andrea L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity 24 (2011), no. 6, 1683–1714. MR 2793895, DOI 10.1088/0951-7715/24/6/001
- Katy Craig and Andrea L. Bertozzi, A blob method for the aggregation equation, Math. Comp. 85 (2016), no. 300, 1681–1717. MR 3471104, DOI 10.1090/mcom3033
- Adrien Blanchet, Jean Dolbeault, and Benoît Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations (2006), No. 44, 32. MR 2226917
- A. Buttenscho and T. Hillen, Non-local cell adhesion models, Springer, 2021.
- José A. Carrillo, Katy Craig, and Yao Yao, Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, Active particles. Vol. 2. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019, pp. 65–108. MR 3932458
- J. A. Carrillo, S. Guo, and A. Holzinger, Propagation of chaos for multi-species moderately interacting particle systems up to Newtonian singularity, arXiv:2501.03087, 2025.
- J. A. Carrillo, Y. Salmaniw, and J. Skrzeczkowski, Well-posedness of aggregation-diffusion systems with irregular kernels, arXiv:2406.09227, 2024.
- J.-Y. Chemin, Perfect incompressible fluids, No. 14, Oxford University Press, 1998.
- Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511–528. MR 2084005, DOI 10.1007/s00220-004-1055-1
- Valeria Giunta, Thomas Hillen, Mark Lewis, and Jonathan R. Potts, Local and global existence for nonlocal multispecies advection-diffusion models, SIAM J. Appl. Dyn. Syst. 21 (2022), no. 3, 1686–1708. MR 4447423, DOI 10.1137/21M1425992
- V. Giunta, T. Hillen, M. A. Lewis, and J. R. Potts, Positivity and global existence for nonlocal advection-diffusion models of interacting populations, arXiv:2312.09692, 2023.
- T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), no. 1-2, 183–217. MR 2448428, DOI 10.1007/s00285-008-0201-3
- Dirk Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103–165. MR 2013508
- Francois James and Nicolas Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM J. Numer. Anal. 53 (2015), no. 2, 895–916. MR 3327358, DOI 10.1137/140959997
- Ansgar Jüngel, Stefan Portisch, and Antoine Zurek, Nonlocal cross-diffusion systems for multi-species populations and networks, Nonlinear Anal. 219 (2022), Paper No. 112800, 26. MR 4379345, DOI 10.1016/j.na.2022.112800
- E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol. 30 1971, no. 2, 225–234.
- Dong Li and José L. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Rev. Mat. Iberoam. 26 (2010), no. 1, 261–294. MR 2666315, DOI 10.4171/RMI/601
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- Kevin J. Painter, Thomas Hillen, and Jonathan R. Potts, Biological modeling with nonlocal advection-diffusion equations, Math. Models Methods Appl. Sci. 34 (2024), no. 1, 57–107. MR 4683281, DOI 10.1142/S0218202524400025
- Benoît Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. MR 2270822
- Hao Wang and Yurij Salmaniw, Open problems in PDE models for knowledge-based animal movement via nonlocal perception and cognitive mapping, J. Math. Biol. 86 (2023), no. 5, Paper No. 71, 69. MR 4572130, DOI 10.1007/s00285-023-01905-9
- Pablo Raúl Stinga, User’s guide to the fractional Laplacian and the method of semigroups, Handbook of fractional calculus with applications. Vol. 2, De Gruyter, Berlin, 2019, pp. 235–265. MR 3965397
- Jiahong Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations (2001), No. 56, 13. MR 1846672
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35A01
Retrieve articles in all journals
with MSC (2020):
35A01
Additional Information
Elaine Cozzi
Affiliation:
Department of Mathematics, Oregon State University, Corvallis, OR 97331
MR Author ID:
813031
Email:
cozzie@math.oregonstate.edu
Zachary Radke
Affiliation:
Department of Mathematics, Oregon State University, Corvallis, OR 97331
ORCID:
0009-0005-7804-8375
Email:
radkeza@oregonstate.edu
Received by editor(s):
April 28, 2024
Received by editor(s) in revised form:
February 2, 2025, February 7, 2025, and March 21, 2025
Published electronically:
June 10, 2025
Additional Notes:
The first author was supported by the Simons Foundation through Grant No. 429578.
Article copyright:
© Copyright 2025
Brown University