Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Exponential asymptotics for translational modes in the discrete nonlinear Schrödinger model


Authors: Christopher J. Lustri, P. G. Kevrekidis and S. Jonathan Chapman
Journal: Quart. Appl. Math.
MSC (2020): Primary 37K40; Secondary 37L15, 34E20
DOI: https://doi.org/10.1090/qam/1718
Published electronically: June 5, 2025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present work, we revisit the topic of translational eigenmodes in discrete models. We focus on the prototypical example of the discrete nonlinear Schrödinger equation, although the methodology presented is quite general. We tackle the relevant discrete system based on exponential asymptotics and start by deducing the well-known (and fairly generic) feature of the existence of two types of fixed points, namely site-centered and inter-site-centered. Then, turning to the stability problem, we not only retrieve the exponential scaling (as $e^{-\pi ^2/(2 \varepsilon )}$, where $\varepsilon$ denotes the spacing between nodes) and its corresponding prefactor power-law (as $\varepsilon ^{-5/2}$), both of which had been previously obtained, but we also obtain a highly accurate leading-order prefactor and, importantly, the next-order correction, for the first time, to the best of our knowledge. This methodology paves the way for such an analysis in a wide range of lattice nonlinear dynamical equation models.


References [Enhancements On Off] (What's this?)

References
  • Mark J. Ablowitz and Justin T. Cole, Nonlinear optical waveguide lattices: asymptotic analysis, solitons, and topological insulators, Phys. D 440 (2022), Paper No. 133440, 21. MR 4461678, DOI 10.1016/j.physd.2022.133440
  • M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, vol. 302, Cambridge University Press, Cambridge, 2004. MR 2040621
  • G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Salerno, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. E (3) 66 (2002), no. 4, 046608, 6. MR 1935204, DOI 10.1103/PhysRevE.66.046608
  • Michael Berry, Asymptotics, superasymptotics, hyperasymptotics$\ldots$, Asymptotics beyond all orders (La Jolla, CA, 1991) NATO Adv. Sci. Inst. Ser. B: Phys., vol. 284, Plenum, New York, 1991, pp. 1–14. MR 1210328
  • M. V. Berry and C. J. Howls, Hyperasymptotics, Proc. Roy. Soc. London Ser. A 430 (1990), no. 1880, 653–668. MR 1070081, DOI 10.1098/rspa.1990.0111
  • P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, Observation of breathers in Josephson ladders, Phys. Rev. Lett. 84 (2000), 745.
  • John P. Boyd, The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math. 56 (1999), no. 1, 1–98. MR 1698036, DOI 10.1023/A:1006145903624
  • R. Carretero-González, D. J. Frantzeskakis, and P. G. Kevrekidis, Nonlinear waves & Hamiltonian systems—from one to many degrees of freedom from discrete to continuum, Oxford University Press, Oxford, [2024] ©2024. MR 4867564
  • S. J. Chapman, J. R. King, and K. L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), no. 1978, 2733–2755. MR 1650775, DOI 10.1098/rspa.1998.0278
  • R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1973. MR 499926
  • N. K. Efremidis and D. N. Christodoulides, Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties, Phys. Rev. E 65 (2002), no. 5, 056607.
  • J. C. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equation - 20 years on, Localization and Energy Transfer in Nonlinear Systems, 2003, pp. 44–67.
  • S. Flach, K. Kladko, and R. S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices, Phys. Rev. Lett. 78 (1997), 1207–1210.
  • G. Gallavotti (ed.), The Fermi-Pasta-Ulam problem, Lecture Notes in Physics, vol. 728, Springer, Berlin, 2008. A status report. MR 2402016, DOI 10.1007/978-3-540-72995-2
  • G. Hwang, T. R. Akylas, and J. Yang, Gap solitons and their linear stability in one-dimensional periodic media, Physica D: Nonlinear Phenomena 240 (2011), no. 12, 1055–1068.
  • Magnus Johansson and Serge Aubry, Growth and decay of discrete nonlinear Schrödinger breathers interacting with internal modes or standing-wave phonons, Phys. Rev. E (3) 61 (2000), no. 5, 5864–5879. MR 1791732, DOI 10.1103/PhysRevE.61.5864
  • Todd Kapitula and Panayotis Kevrekidis, Stability of waves in discrete systems, Nonlinearity 14 (2001), no. 3, 533–566. MR 1830906, DOI 10.1088/0951-7715/14/3/306
  • T. Kapitula, P. G. Kevrekidis, and C. K. R. T. Jones, Soliton internal mode bifurcations: Pure power law?, Phys. Rev. E 63 (2001), 036602.
  • D. J. Kaup, Perturbation theory for solitons in optical fibers, Phys. Rev. A 42 (1990), 5689–5694.
  • P. G. Kevrekidis, Non-linear waves in lattices: past, present, future, IMA J. Appl. Math. 76 (2011), no. 3, 389–423. MR 2806003, DOI 10.1093/imamat/hxr015
  • Panayotis G. Kevrekidis, The discrete nonlinear Schrödinger equation, Springer Tracts in Modern Physics, vol. 232, Springer-Verlag, Berlin, 2009. Mathematical analysis, numerical computations and physical perspectives; Edited by Kevrekidis and with contributions by Ricardo Carretero-González, Alan R. Champneys, Jesús Cuevas, Sergey V. Dmitriev, Dimitri J. Frantzeskakis, Ying-Ji He, Q. Enam Hoq, Avinash Khare, Kody J. H. Law, Boris A. Malomed, Thomas R. O. Melvin, Faustino Palmero, Mason A. Porter, Vassilis M. Rothos, Atanas Stefanov and Hadi Susanto. MR 2742565, DOI 10.1007/978-3-540-89199-4
  • J. R. King and S. J. Chapman, Asymptotics beyond all orders and Stokes lines in nonlinear differential-difference equations, European J. Appl. Math. 12 (2001), no. 4, 433–463. MR 1852310, DOI 10.1017/S095679250100434X
  • Y. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Internal modes of solitary waves, Phys. Rev. Lett. 80 (1998), 5032–5035.
  • F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463 (2008), no. 1, 1–126.
  • O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Modern Phys. 78 (2006), 179–215.
  • V. F. Nesterenko, Dynamics of heterogeneous materials, Springer-Verlag, New York, 2001.
  • Emmy Noether, Invariant variation problems, Transport Theory Statist. Phys. 1 (1971), no. 3, 186–207. MR 406752, DOI 10.1080/00411457108231446
  • A. B. Olde Daalhuis, S. J. Chapman, J. R. King, J. R. Ockendon, and R. H. Tew, Stokes phenomenon and matched asymptotic expansions, SIAM J. Appl. Math. 55 (1995), no. 6, 1469–1483. MR 1358785, DOI 10.1137/S0036139994261769
  • Michel Peyrard, Nonlinear dynamics and statistical physics of DNA, Nonlinearity 17 (2004), no. 2, R1–R40. MR 2039047, DOI 10.1088/0951-7715/17/2/R01
  • M. Peyrard and A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation, Phys. Rev. Lett. 62 (1989), 2755–2758.
  • Michel Remoissenet, Waves called solitons, 3rd ed., Springer-Verlag, Berlin, 1999. Concepts and experiments. MR 1716486, DOI 10.1007/978-3-662-03790-4
  • Mario Salerno, Quantum deformations of the discrete nonlinear Schrödinger equation, Phys. Rev. A (3) 46 (1992), no. 11, 6856–6859. MR 1197301, DOI 10.1103/PhysRevA.46.6856
  • Yu. Starosvetsky, K. R. Jayaprakash, M. Arif Hasan, and A. F. Vakakis, Dynamics and acoustics of ordered granular media, World Scientific, Singapore, 2017.
  • A. Szameit, R. Keil, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, and A. Tünnermann, Observation of discrete solitons in lattices with second-order interaction, Optim. Lett. 34 (2009), no. 18, 2838–2840.
  • E. Trías, J. J. Mazo, and T. P. Orlando, Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array, Phys. Rev. Lett. 84 (2000), 741.
  • Anna Vainchtein, Solitary waves in FPU-type lattices, Phys. D 434 (2022), Paper No. 133252, 22. MR 4399246, DOI 10.1016/j.physd.2022.133252
  • M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity 12 (1999), no. 3, 673–691. MR 1690199, DOI 10.1088/0951-7715/12/3/314

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2020): 37K40, 37L15, 34E20

Retrieve articles in all journals with MSC (2020): 37K40, 37L15, 34E20


Additional Information

Christopher J. Lustri
Affiliation: School of Mathematics and Statistics, The University of Sydney, Camperdown 2050, Australia
MR Author ID: 986905
ORCID: 0000-0001-9504-277X
Email: christopher.lustri@sydney.edu.au

P. G. Kevrekidis
Affiliation: Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts 01003; \normalfont and Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003
MR Author ID: 657357
ORCID: 0000-0002-7714-3689
Email: kevrekid@umass.edu

S. Jonathan Chapman
Affiliation: Mathematical Institute, University of Oxford, Radcliffe Observatory, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, United Kingdom
MR Author ID: 315079
ORCID: 0000-0003-3347-6024
Email: jon.chapman@maths.ox.ac.uk

Received by editor(s): February 2, 2025
Received by editor(s) in revised form: May 11, 2025
Published electronically: June 5, 2025
Additional Notes: The first author was supported by the Australian Research Council DP190101190 and DP240101666. The second author was supported by the U.S. National Science Foundation under the awards PHY-2110030, PHY-2408988, and DMS-2204702.
Dedicated: Dedicated to Professor Björn Sandstede on the occasion of his 60th birthday
Article copyright: © Copyright 2025 Brown University