Solution by relaxation methods of plane potential problems with mixed boundary conditions
Author:
L. Fox
Journal:
Quart. Appl. Math. 2 (1944), 251-257
MSC:
Primary 65.0X
DOI:
https://doi.org/10.1090/qam/10679
MathSciNet review:
10679
Full-text PDF Free Access
References |
Similar Articles |
Additional Information
R. V. Southwell, Proc. Roy. Soc. Lon. (A), 151, 59—65 (1935); 153, 41—76 (1935).
Relaxation methods applied to engineering problems: I. K. N. E. Bradfield and R. V. Southwell, Deflection of beams under transverse loading, Proc. Roy. Soc. Lon. (A), 161, 155—181 (1937). II. A. N. Black and R. V. Southwell, Basic theory, with applications to surveying and to electrical networks, and an extension to gyrostatic systems, Proc. Roy. Soc. Lon. (A), 164, 447—467 (1938). III. D. G. Christopherson and R. V. Southwell, Problems involving two independent variables, Proc. Roy. Soc. Lon. (A), 168, 317—350 (1938). IV. K. N. E. Bradfield, D. G. Christopherson and R. V. Southwell, Elastic stability and vibrations, Proc. Roy. Soc. Lon. (A), 169, 289—317 (1939). V. R. W. G. Gandy and R. V. Southwell, Conformal transformation of a region in plane space, Trans. Roy. Soc. Lon. (A), 238, 453—475 (1940). VI. A. Pellew and R. V. Southwell, Natural frequencies of systems having restricted freedom, Proc. Roy. Soc. Lon. (A), 175, 262—290 (1940). VII. F. S. Shaw and R. V. Southwell, Problems relating to the percolation of fluids through porous materials, Proc. Roy. Soc. Lon. (A), 178, 1—17 (1941). VIII. G. Vaisey and R. V. Southwell, Plane-potential problems involving specified normal gradients, Proc. Roy. Soc. Lon. (A), 182, 129—151 (1943).
L. Prandtl, Physik. Z., 4, 758—759 (1903).
D. G. Christopherson, Trans. A.S.M.E., 62, A1—A4 (1940).
R. V. Southwell, Proc. Roy. Soc. Lon. (A), 151, 59—65 (1935); 153, 41—76 (1935).
Relaxation methods applied to engineering problems: I. K. N. E. Bradfield and R. V. Southwell, Deflection of beams under transverse loading, Proc. Roy. Soc. Lon. (A), 161, 155—181 (1937). II. A. N. Black and R. V. Southwell, Basic theory, with applications to surveying and to electrical networks, and an extension to gyrostatic systems, Proc. Roy. Soc. Lon. (A), 164, 447—467 (1938). III. D. G. Christopherson and R. V. Southwell, Problems involving two independent variables, Proc. Roy. Soc. Lon. (A), 168, 317—350 (1938). IV. K. N. E. Bradfield, D. G. Christopherson and R. V. Southwell, Elastic stability and vibrations, Proc. Roy. Soc. Lon. (A), 169, 289—317 (1939). V. R. W. G. Gandy and R. V. Southwell, Conformal transformation of a region in plane space, Trans. Roy. Soc. Lon. (A), 238, 453—475 (1940). VI. A. Pellew and R. V. Southwell, Natural frequencies of systems having restricted freedom, Proc. Roy. Soc. Lon. (A), 175, 262—290 (1940). VII. F. S. Shaw and R. V. Southwell, Problems relating to the percolation of fluids through porous materials, Proc. Roy. Soc. Lon. (A), 178, 1—17 (1941). VIII. G. Vaisey and R. V. Southwell, Plane-potential problems involving specified normal gradients, Proc. Roy. Soc. Lon. (A), 182, 129—151 (1943).
L. Prandtl, Physik. Z., 4, 758—759 (1903).
D. G. Christopherson, Trans. A.S.M.E., 62, A1—A4 (1940).
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC:
65.0X
Retrieve articles in all journals
with MSC:
65.0X
Additional Information
Article copyright:
© Copyright 1944
American Mathematical Society