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CONCERNING A NEW TRANSCENDENT, ITS TABULATION AND
APPLICATION IN ANTENNA THEORY*

BY

C. J. BOUWKAMP
Natuurkundig Laboratorium der N. V. Philips' Gloeilampenfabrieken, Eindhoven

1. Introduction. As is well known, the integral sine and cosine functions Si(z)
and Ci{z), respectively, are frequently met with in problems of applied mathematics.
As an example we may mention the theory of antenna radiation, though in this field
one preferably uses a slightly different pair of functions S(z), C{z) defined by

£(z) = C(z) + iS(z) = f (1 - e~u)dt/t, (1)
" 0

wherein i denotes the imaginary unit. Obviously 5(2) is identical to Si(z):

S(z) = Si(z) = T sin I dt/t. (2)
J o

Further,1 if y denotes Euler's constant,

C(z) = 7 + log z — Ci(z) = f (1 — cos t)dt/t. (3)
' o

Recently, the author was led to the study of another transcendental function
closely related to that defined by (1). This new function Ei(z) is related to E(z) in the
same way as the latter is to the ordinary trigonometric functions, viz.

/* Z /» 1 /» 1E(t)dt/t = I I (1 — e~iz'')dsdt/st. (4)
o <J o J o

The function Ei(z) was encountered in antenna theory but may possibly be of
some value in other fields as well. Therefore it is thought worth while to treat some
of its features here. In addition, a short table of numerical values may be of general
interest. Finally, the function a2(x), as it occurs in Hallen's antenna theory, is shown
to be expressible in terms of the functions E{x) and E\{x).

2. Power series and asymptotic expansion for Ei(z). With respect to numerical
evaluation, especially for small values of z,a power-series development may serve the
purpose. After expanding the integrand in (1) into powers of t, one simple integration
leads to a power series for E{z). Using the latter in the left-hand integral of (4) we ob-
tain, after another term-by-term integiation, the required expansion immediately,
viz.

™ (— iz)"
F^z) = - £ „ , • (5)

* Received Nov. 26, 1946.
1 In our opinion, the short notation C(z) for the integral (3) is to be preferred to those like Ci(z) or

Cin{z), as suggested by some authors. Then E(z) may be a suitable abbreviation for the combination (1)
analogous to the familiar exp {iz) =cos z+i sin z.
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For large values of z, however, an asymptotic expansion is more desirable. In this
respect we have found the following development:

E\{z) ~ A + B log z + (log z)2/2 + -y- ^n\(\ H 1 h • • • H \
iz n=i \ 2 3 n /

(i/z)n, (6)

where the constants A and B are given by

A = y2/2 - 7T2/24 + iryi/2 = - 0.24464 45548 + 0.90668 45943i,
B = 7 + ti/2 = 0.57721 56649 + 1.57079 63268i.

Formula (6) may be proved as follows: An equivalent definition of Ei(z) is

Ei(z) = — f (1 — e~"') log tdt/t, (7>
J o

as can be verified by a partial integration of the left-hand integral in (4), and an
obvious change in the variable of integration. Once more integrating by parts one is
led to

1 r1
li (z) = — iz I e~11

2 Jo
'(log t)2dt. (8)

Now, for large2 values of z, the main contribution to the integral (8) comes from the
values of the integrand in the neighbourhood of t = 0. It is therefore reasonable to
consider the integral (8) as the sum of two terms:

£x(z) = H{z) + h(z), (9)

where the "main term" and the "correction term" are defined by

1 r~ix
H(z) =—- iz I e~i2'(log t)2dt, (10)

2 J o

1 r1h(z) =—iz I e~"'(log l)2dt, (11)
2 J -<oo

respectively.
Let us first transform the main term H{z). Evidently one can transform the ex-

pression (10) into

1 r d2 r "I
H(z) = —iz\  I

2 Us2 Jo J._i
Now, from gamma-function theory, we have

9

t"~xe~i*tdt = T(s)/(iz)'.f,0
Consequently, upon performing the differentiations,

ff(z) = r"(l)/2 - (log z + «/2)r'(l) + (log z + Til2)2r(l)/2.

2 Henceforth we suppose z>0.
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Finally, after substitution of the known numerical constants

r(i) = l, r'(i) - - T, r"(i) = + *76,
one easily finds

H(z) = A + B log z + (log z)2/2,
\

wherein the coefficients A, B are as specified above.
Concerning the correction term h(z) we proceed as follows: Let

g(t) = (log f) 2/2;

then, by successive partial integrations of (11),

h(z)
r s'(i) g(n)(i)i i r~iKe-'* g( 1) + ^ + ■ • • + - T^T
L iz (iz)n J (lz)nJ 1(iz)n J (iz)r

Further, by induction, or otherwise,

g(n+i)(<) = (- 1)nfi! r^flog t - 1 - —Y
\ 2 n /

g(l) = g'(l) =0, *<"+»(l) = (- \)n+ln\(\ +4*+ -7 + • • • + —Y
\ 2 3 n /

We thus obtain for h(z), after N = n — 1 terms,

e~" / 11 1 \h(z) = — E»! 1 + — + — + + — )(tA)M + ^(3), (12)
(2 „i \ 2 3 n /

where the remainder Rn(z) is given by

iN+1(N + 1)! r~ix e~ut ( 1 1 ) , ,
Rn(z) =  I  < 1 H {-••• + log tfdt. (12a)

zN+1 J i tN+* I 2 N + 1 J

Moreover, it can be shown that

, . ( 2/{N +1) \ ,
RN(z) < I 1 H     ) X last term taken into account ,

' Wl 1 + 1/2+ ••• + i/(N + 1)/ ' '

I Rn(z) I < I 1 -( — —    — ) X I first term not taken into account I.
1 W'-\ 1 + 1/2+ •• - + 1/(^+1)/ 1 1

Further details are left to the reader.
We have thus proved the validity of the asymptotic expansion (6) for positive

values of s, though (6) holds for Re(s) >0 as well.
3. A third development for the function Ei(z). For moderate values of z (for

instance 2 = 10) neither the power series (5) nor the asymptotic development (6) is
very useful for numerical purposes, as then too many terms are required. For such
values of z it is better to apply the Taylor series.

To that end we use the obvious formula

" dn (E(z)) A"+l » A"
E1(z + A) = E1(z) + £ — <—>7-7—7 - E1(z) + E — Cn(z). (13)

n—o dzn\ z ) (« + 1)! „=1 n!
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The series (13) converges for all values of A because £i(z+A) is an integral func-
tion of A. The following recurrence relations for the coefficients cn(z), (n>0), can be
established:

z2cn+2(z) + (2n + l)zc„+i(z) + n2c„(z) = (- l)n+1ine~iz, (14)

with initial values

C\{z) = E{z)/z, c2(z) = [l — e~" — E(z)]/z2.

Given z, the functions c„(z) can be calculated success'vely. As at present there exist
very accurate tables for the integral sine and cosine functions,3 it is not difficult to
prepare an auxiliary table for the function E(z).

4. A short table for the function £i(z). We have prepared a short six-decimal
table for Ei(z) for values of z between 0.0 and 20.0 at intervals of length 0.2. For
z^5.0 the power series was applied, up to 8 decimals. For 5.020.0 the function
was computed by means of (13), the functions c„(z) being pre-calculated (8 decimals)
for z = 5, 7, • ■ ■ , 19. Accordingly, (13) was successively applied with values of | A |
not exceeding 1.0.

The value of Ei(20), obtained in this way, was checked by application of the
asymptotic series for z — 20. The difference appeared only two units of the eighth
decimal. The values of £i(10) and £i(15) were also checked, by comparison with the
power-series values. Moreover the eight-decimal numbers on the worksheet were
checked by calculating sixth-order differencesj and then rounded off to six decimals.
Therefore, it will be very unlikely that the error therein exceeds half a unit of the last
decimal.

Tables I, II contain the real and imaginary parts of the function E\(z), respec-
tively. Thus they give

Re Ei(z) = r [y + log t — Ci(t)]dt/t = z f sin zt (log t)2 dt/2, (15)
J 0 J 0

Im Ei(z) = f Si(t)dt/t = z f cos zt (log t)2 dt/2. (15a)
Jo J 0

5. Hallen's second-order function a^x). Hallen4 derived the following expression
for the self-impedance of the center-fed perfectly conducting cylindrical antenna

cos * + ai(^c)/0 + a2(x)/tt2 + • • •
Z(x) = — 60 iO ■

sin x + /Si(x)/Q + f}2(x)/Q2 +

In this formula 12 denotes a large constant, depending on the radius a and the half-
length I of the antenna: B = 2 log (2l/a). Further x — kl = 2ivl/\, where X is the wave-
length.

Only the first-order coefficients «t(x) and fiiix) can be given explicitly in terms of
known functions, namely

ai(x) = %eixE(4x) — cos xE(2x). (16)

= \ieix[E{4x) — 4£(2x)} + sin a{log 4 — E{2x) \ . (16a)
8 Tables of sine, cosine and exponential integrals, vols. I, II; New York (1940). Table of sine and

cosine integrals; New York (1942). (Federal Works Agency, W.P.A., City of New York.)
4 Erik Hallen, Nova acta reg. soc. sci. Upsaliensis (4) 11, 1044 (1938).
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Rather intricate formulae were given for the second-order coefficients a2(x) and ft(x),
which were evaluated by graphical methods.5 It may be noticed that in the refined
theory6 the same second-order coefficients occur.

Recently a2(x) was found to be expressible in terms of E(x) and E\{x) by means of
a fairly simple formula, viz.

cti(x) = — «i(x) {log 4 + E(2x)} — cos xE-(2x)/2

+ 2i sin x£i(4x) + cos x{Ei(4x) — 2Ei(2x)\. (17)

With the help of our tables for the function E\(x), and the American tables for
Si(x), Ci(x), we have calculated «i and a2 to six decimals for 0.0(0.1)5.0. After careful
checking, these results were rounded off to four decimals. The final data are given
in tables III, IV, whereby

ai(x) = «i(x) + ioc\ (x), a2(x) = a2(x) + ia2 (x).

Comparison of our table for the first-order coefficient «i(x) with those of King
and Blake7 shows only small differences in the last decimal. Also the values of the
second-order coefficient a2(x) are in good agreement with the corresponding two-
decimal values obtained by graphical integration.6

As for the other second-order coefficient, we do not think it possible to express
j32(x) in such a simple way; unfortunately, more intricate functions seem to play a
part.

In the following sections a proof of formula (17) will be given. As a rather large
amount of analysis seems necessary to establish such proof, we may once more
emphasize the usefulness of the short abbreviation E(x) as was adopted here for the
combined integral sine and cosine functions.

6. Some auxiliary functions. We introduce the following four functions:

rx £(x) — E{t) r1
<£i(x) = I  dt = — I log (1 — t/x)( 1 — e~~lt)dt/t, (18)

Jo x — t J 0

<fa(x) = f E(x ~ 0(1 — e~il)dt/t, (19)
J 0

<t> a(x) = r \E(x — 0 — E(x)}e~udt/t, (20)
" o

/» 2x

<t>i(x) = | {cos (x — 0 — cos x\ log (1 — t/2x)e~udt/t. (21)
J o

Between these functions the following relations exist: -

2<t>\(x) + <^>2(x) = 2Ex(x), (22)

<t> i(x) + 4>2(x) + <t>3(x) = E\x), (23)
<f>t(x) = eix<f>i(4x)/2 — cos x<j)i(2x). (24)

5 C. J. Bouwkamp, Physica 9, 609-631 (1942).
6 R. King and D. Middleton, Quart. Appl. Math. 3, 302-335 (1945).
7 R. King and F. G. Blake, Proc. Inst. Radio Engrs. 30, 335-349 (1942).
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Formula (22) is especially noteworthy as it does not seem to be some trivial equality.
A straightforward proof of it may be established by expanding both sides into
powers of x. Evidently, <pi and <pi are integral functions; their respective power series
converge for all finite values of x. One will get

" (- ixW 1 1 \
<t> i(x) — — ̂ 2 —■( 1 + — + ••■ H ),

n-i n ■ n! \ 2 n /

» (_ ix)n+1 / 1 1 \— 2 —   ———~— ( ^ "I" — "I" ' ' ' "I" — ) ,
Zl (»+ 1)0+ 1) !\ 2 n)'

and then (22) follows at once on account of (5).
A detailed proof of (24) only will be given as an example. Firstly,

{cos (x — t) — cos x}e~il/t = — 5fiix(l — e~2it)/t + cos x (1 — e~u)/t

d

(18a)

(19a)

— t P.iX

dt
?eixE(2t) + cos x E{t)}.

Therefore,

/► 2x ^log (1 — t/2x) — [\eix{E(2t) — E(4x) \ — cos x\E(t) — E(2x)}]dt.
o dt

Secondly, by partial integration,

1 c21 £(2') - £(4*) Cx Eif) ~ E(2x)
<t>i(x) = — etx I  dt — cos x I  dt,

2 J o t — 2 x Jo t — 2 x

and, after some trivial transformation and by the use of (18), this reduces to (.24).
7. Proof of formula (17). Instead of Hallen's functions F„(z) we take /»(z)

= Fn(z/k). These functions are recurrently defined by

/o(z) = cos z,

fn+l(z) = \fn(x) - /„(z) } log (1 - S2/^2)

Cx {fn(x) - /n(f)} exp (- i\z + f I ) - {/„(*) - /n(z)}
+ I  i i fff •

— x | Z J

Apart from/o, only/i can be given explicitly in terms of known functions, viz.

/l(z) = (cos x — cos z) log (1 — zi/x2)

+ %{e'*E(2x + 2z) + e~~izE(2x — 2z)} — cos x[E{x + z) + E{x — z)}. (25)

The functions «i(x) and a^{x) are obtained when z = x is substituted in/i(z) and/2(z),
respectively. Therefore the required expression for a2(x) has to be derived from

«2(«) = f {fi(x) — fi(x — 0}    dt. (26)
J o t

We first write

fi(x) — fi(x — t) = 7*1 + ^2 + ••• + Tt,
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wherein

Tx = {cos (x — t) — cos x} log (2t/x), (27)

T2 = - eix-euE(2t)/2, (28)

r3 = cos :*:.£(/) (29)
= e«E(4*)(l - e~u)/2, (30)

r6 = {cos (x — t) — cos #} log (1 — t/2x), (31)
r6 = cos x {E(2x -t) - E(2x)}, (32)
j7 = _ eix-e~H{E{4x - 2t) - £(4*)}/2. (33)

Let the corresponding contributions to the integral in (26) be denoted by J„, thus

/» 2x Tne-il,
o

dt/t
J o

Then one will find consecutively

I\ — — a\(x) log 4 + eixEi(4x)/2 — cos xE\{2x), (27a)

/„ = _ <r«Ei(4*)/2, (28a)
/, = cos z{£:(2*) - E*(2x)/2) (29a)
h = eix£(4x) {£(4*) - £(2x) }/2, (30a)
/6 = eix4>i(4x)/2 — cos x<j>\{2x), (31a)

/6 = cos x{E2(2x) — <f>i(2x) — <^>2(2ac)}, (32a)

h = eix{«i(4*) + 4>2(4») - £2(4z)}/2. (33a)

It is thought unnecessary to give detailed proofs of the above formulae, as the general
lines are the same as in the example of the preceeding section.

Upon substituting (27a) • • • (33a) in ai(x) = /1 + /2+ • • • +J7, we obtain

oi2(x) = cos x£2(2a:)/2 — eixE(2x)E(4x)/2 — ai(») log 4 + i sin xE\{4x)

— ccs x {2<t>i(2x) + <t>i(2x)} + e"{2<t>1(4x) + <*>2(4x)}/2.

On account of (22), the functions <pi and <p% can be eliminated. One then easily obtains
the required formula (17).



z Re£i

0.0 0.000 000
0.2 0.004 996
0.4 0.019 933
0.6 0.044 664
0.8 0.078 943
1.0 0.122 434
1.2 0.174 714
1.4 0.235 281
1.6 0.303 564
1.8 0.378 933
2.0 0.460 706
2.2 0.548 165
2.4 0.640 563
2.6 0.737 142
2.8 0.837 139
3.0 0.939 800
3.2 1.044 392
3.4 1.150 210
3.6 1.256 591
3.8 1.362 916
4.0 1.468 623
4.2 1.573 207
4.4 1.676 231
4.6 1.777 320
4.8 1.876 168
5.0 1.972 538

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

10.0

Table I

ReEi

1.972 538
2.066 256
2.157 214
2.245 360
2.330 699
2.413 282
2.493 205
2.570 598
2.645 618
2.718 446
2.789 276
2.858 31C
2.925 751
2.991 799
3.056 642
3.120 458
3.183 403
3.245 618
3.307 218
3.368 298
3.428 929
3.489 159
3.549 016
3.608 507
3.667 622
3.726 338

z

10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0

ReEx z RejEi

3.726 338 15.0 4.982 566
3.784 619 15.2 5.025 625
3.842 420 15.4 5.068 443
3.899 692 15.6 5.111 035
3.956 381 15.8 5.153 410
4.012 436 16.0 5.195 569
4.067 808 16.2 5.237 508
4.122 452 16.4 5.279 217
4.176 332 16.6 5.320 681
4.229 418 16.8 5.361 884
4.281 693 17.0 5.402 804
4.333 147 17.2 5.443 422
4.383 783 17.4 5.483 715
4.433 614 17.6 5.523 663
4.482 661 17.8 5.563 247
4.530 954 18.0 5.602 453
4.578 533 18.2 5.641 267
4.625 441 18.4 5.679 683
4.671 727 18.6 5.717 694
4.717 442 18.8 5.755 304
4.762 639 19.0 5.792 515
4.807 370 19.2 5.829 339
4.851 684 19.4 5.865 788
4.895 628 19.6 5.901 879
4.939 244 19.8 5.937 632
4.982 566 20.0 5.973 068

Table II

z Im£i ImEi Im£i z ImEi

0.0 0.000 000
0.2 0.199 852
0.4 0.398 818
0.6 0.596 026
0.8 0.790 627
1.0 0.981 811
1.2 1.168 815
1.4 1.350 936
1.6 1.527 537
1.8 1.698 057
2.0 1.862 017
2.2 2.019 023
2.4 2.168 772
2.6 2.311 048
2.8 2.445 729
3.0 2.572 779
3.2 2.692 246
3.4 2.804 259
3.6 2.909 021
3.8 3.006 798
4.0 3.097 916
4.2 3.182 750
4.4 3.261 713
4.6 3.335 250
4.8 3.403 823
5.0 3.467 907

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

10.0

3.467 907
3.527 976
3.584 497
3.637 923
3.688 683
3.737 180
3.783 779
3.828 813
3.872 571
3.915 302
3.957 213
3.998 470
4.039 198
4.079 485
4.119 385
4.158 921
4.198 089
4.236 865
4.275 206
4.313 058
4.350 357
4.387 037
4.423 033
4.458 283
4.492 731
4.526 334

10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0

4.526 334 15.0 5.157 090
4.559 056 15.2 5.178 576
4.590 878 15.4 5.199 864
4.621 791 15.6 5.220 929
4.651 802 15.8 5.241 742
4.680 931 16.0 5.262 280
4.709 208 16.2 5.282 518
4.736 676 16.4 5.302 436
4.763 386 16.6 5.322 019
4.789 398 16.8 5.341 255
4.814 776 17.0 5.360 140
4.839 587 17.2 5.378 671
4.863 898 17.4 5.396 855
4.887 779 17.6 5.414 701
4.911 291 17.8 5.432 223
4.934 494 18.0 5.449 442
4.957 441 18.2 5.466 378
4.980 178 18.4 5.483 057
5.002 741 18.6 5.499 504
5.025 158 18.8 5.515 747
5.047 448 19.0 5.531 813
5.069 623 19.2 5.547 727
5.091 683 19.4 5.563 513
5.113 624 19.6 5.579 192
5.135 432 19.8 5.594 782
5.157 090 20.0 5.610 298



Table III

ii

0.0000 0.0000
-0.0100 0.0007
-0.0393 0.0053
-0.0865 0.0175
-0.1490 0.0407
-0.2235 0.0773
-0.3061 0.1292
-0.3924 0.1973
-0.4780 0.2815
-0.5583 0.3807
-0.6291 0.4930
-0.6866 0.6156
-0.7278 0.7451
-0.7503 0.8777
-0.7528 1.0091
-0.7345 1.1351
-0.6957 1.2517
-0.6376 1.^550
-0.5618 1.4419
-0.4708 1.5097
-0.3672 1.5563
-0.2540 1.5805
-0.1343 1.5819
-0.0109 1.5604
0.1134 1.5170
0.2361 1.4528

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

0.2361 1.4528
0.3550 1.3695
0.4686 1.2690
0.5756 1.1534
0.6749 1.0247
0.7661 0.8851
0.8487 0.7362
0.9225 0.5800
0.9875 0.4180
1.0436 0.2514
1.0905 0.0816
1.1280 -0.0904
1.1556 -0.2634
1.1730 -0.4363
1.1795 -0.6080
1.1743 -0.7771
1.1569 -0.9422
1.1265 -1.1016
1.0828 -1.2535
1.0253 -1.3960
0.9542 -1.5271
0.8695 -1.6446
0.7720 -1.7468
0.6625 -1.8315
0.5423 -1.8973
0.4130 -1.9426

Table IV

ii
<*2

0.0000 0.0000
-0.0359 0.0022
-0.1415 0.0171
-0.3099 0.0563
-0.5311 0.1284
-0.7919 0.2392
-1.0784 0.3901
-1.3762 0.5790
-1.6723 0.8004
-1.9560 1.0462
-2.2191 1.3070
-2.4564 1.5727
-2.6654 1.8344
-2.8455 2.0844
-2.9977 2.3171
-3.1232 2.5291
-3.2229 2.7192
-3.2969 2.8875
-3.3437 3.0355
-3.3604 3.1644
-3.3431 3.2752
-3.2867 3.3680
-3.1862 3.4413
-3.0369 3.4923
-2.8350 3.5166
-2.5787 3.5091

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

-2.5787 3.5091
-2.2678 3.4640
-1.9045 3.3755
-1.4931 3.2385
-1.0397 3.0487
-0.5524 2.8034
-0.0402 2.5018

0.4869 2.1447
1.0187 1.7349
1.5450 1.2770
2.0560 0.7771
2.5430 0.2427
2.9979 -0.3177
3.4141 -0.8948
3.7862 -1.4792
4.1100 -2.0611
4.3828 - 2.6312
4.6030 -3.1808
4.7700 -3.7021
4.8840 -4.1880
4.9459 -4.6330
4.9568 -5.0323
4.9180 - 5.3825
4.8308 -5.6811
4.6959 -5.9264
4.5142 -6.1172


