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After (n — 1) modes have been found, and the reduction of the matrix a,, carried
out for each of them in the manner described, we must be left with the matrix

ar. — E = c£\
jVi

where i is the number of the mode left to be found. In this matrix the terms of any row
are proportional to E« a,ex\x) so the remaining i-th mode can be found by solving the
set of linear equations

E ar,x, = a['r .
s

The reductions can often be carried out with advantage in terms of the matrix br, ;
this is done by normalizing the modes so that instead of satisfying (10) they satisfy

E = 1,
rs

and calculating a'^ from the formula

ai? = X- Z E
. k e

which is easily deduced from (8). This is particularly convenient in the most usual type
of problem in which brt is a diagonal matrix—in mechanical problems, those in which
the kinetic energy can be expressed as a sum of squares. If | brs | = | mrSr. \ the modes
must be normalized by

E mXyY'T = i
r

and then

a'1' = Xl,) mrm.x{r,) a:,*'.

After reductions corresponding to all but the z-th mode have been made on the matrix
ar, , the remaining matrix is. a']' from whose rows the z-th mode can be found imme-
diately.

A NORM CRITERION FOR NON-OSCILLATORY DIFFERENTIAL EQUATIONS*
By AUREL WINTNER (The Johns Hopkins University)

Let f{t), x(t), \(t), • • • denote real-valued, continuous functions on an unspecified
half-line, tQ ̂  t < ^. If \{t) is positive on this half-line, put

X* = X*(f) = X(i) (du)/\\u), (1)

provided that the second factor on the right of (1) is a convergent integral. Under this
proviso, a direct substitution of (1) shows that, if \{t) is a solution of the differential
equation D,{\) = 0, where
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184 NOTES . [Vol. VI, No. 2

D,(X) = Z)/(X(0) = X "(t) + Mm, (' = d/dt) (2)
then Df(\*) = 0, i.e., that X*(t) represents another (linearly independent) solution.

Following A. Kneser1, let the differential equation Df(x) = 0 be called oscillatory
or non-oscillatory according as each or none of its solutions x(t) ^0 has zeros clustering
at t = oo. This alternative is complete, since, in view of Sturm's separation theorem,
either every or no solution x(t) ^ 0 of Df(x) = 0 has an infinity of zeros on the half-
line t <0 ■ The decision of the alternative (for a given coefficient function, / = /(<),
of D,) is fundamental in certain questions of stability and related applications2.

It seems to be of both theoretical and practical interest that the decision can always
be based on a criterion similar to the "norm" conditions in the theory of linear func-
tional and operators (Lebesgue-Toeplitz). It is a criterion the applicability of which
does not involve, in principle, the knowledge of a solution x(t) ^ 0 of Df(x) = 0, since
it depends on the consideration of arbitrary functions. It can be formulated as follows:

The differential equation Df(x) = 0 is of non-oscillatory type if and only if there exists
some positive function, say \(t), corresponding to which the assignments (1), (2) define
two continuous functions the product of which is absolutely integrable, i.e.,

f X* | Df(\) | dt < oo. (3)

As an illustration of how to apply this criterion, choose the arbitrary function X(<)
to be t. Then (1) and (2) reduce to X* = 1 and Df(\) = f(t)t, respectively, and so (3)
will be satisfied if | f(t) \ t has a finite integral over the half-line. It follows that the
absolute integrability of f{t)t (which, incidentally, is compatible with lim sup f{t)t =
oo and lim inf f(t) = — oo, where t —» oo) is sufficient in order that the differential equa-
tion Df{x) = 0 be of non-oscillatory type.

Actually, this particular sufficient condition is contained in an asymptotic result of
B6cher3. But this is not a necessary condition. In fact, other sufficient conditions result
if the choice X = t is replaced by other choices of the arbitrary function X(<). Such
choices can be made relative to the coefficient function, f, of D, , rather than in a way
which, as in X = t, is independent of /.

Proof of the sufficiency. This part of the italicized criterion can be deduced from the
following fact, which is a corollary of a general theorem4: If p = p(t) ^ 0 and q =
q(t) are continuous functions for large positive t, then the condition

/ I I (I I P(«) | 1 du^J dt < <x> (4)
is sufficient in order that some solution y = y{t) of the differential equation

(py'Y + qy = o (' = d/dt) (5)
•A. Kneser, Untersuchungen xiber die reellen Nullstellen der Integrate linearer Differentialgleichungen,

Mathematische Annalen 42, 409-435 (1,893), p. 411.
2T. v. Karman and M. A. Biot, Mathematical methods in engineering, New York and London, 1940,

Chapter VII and the references on p. 322.
3M. B6cher, On regular singular points of linear differential equations of the second order whose coeffi-

cients are not necessarily analytic, Transactions of the American Mathematical Society 1, 40-52 (1900),
pp. 48-52.

4A. Wintner, Asymptotic integrations of the adiabatic oscillator in its hyperbolic range, to appear in the
Duke Mathematical Journal IS, (1948).
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should tend to a finite limit, as t —» °o, and that this limit, y{ oo), be distinct from 0.
It follows that, if X = \(t) is any positive function possessing a continuous second

derivative, then the case

P = X2, q = XX" + /X2 (6)

of (5) must have some solution y = y{t) which does not vanish from a certain t onward,
if condition (4) is satisfied by the functions (6). But it is clear from the definitions (1),
(2) that the case (6) of (4) is identical with (3). Since \(t) is positive, it follows that (3)
implies the non-oscillatory character of that differential equation for x = x(t) which
results when y = x/\ is substituted into the case (6) of (5).

The result of this substitution is seen to be the differential equation

(;x'\ — x\')' + (X" + f\)x = 0.

Since the latter can be contracted into (x" + fx)\ — 0, where X > 0, it is equivalent
to x" + fx = 0 and so, in view of (2), to D,(x) = 0. This completes the proof of the
sufficiency of (3).

Proof of the necessity. This part of the criterion is of theoretical interest only, and its
verification is straightforward. As a matter of fact, X(i) can now be chosen to be a solution
x{t) of Df(x)' = 0.

In order to see this, suppose that the differential equation is non-oscillatory. Then
there exist a constant t0 and a solution x(t) of Dr(x) = 0 such that x(t) >0 when t0 5=
t < co. Let t° be any value exceeding t0 , restrict t to the half-line t° ^ t < oo, and put

X(0 = x(t) [' (du)/x2(u). (7)
Jto

Then \(t) is positive, since x(t) is. Furthermore, it is easily verified from (2) and (7)
that Df(X) = 0, since Df(x) = 0. Hence, in order to prove that condition (3) is satisfied
by the function (7), all that remains to be ascertained is that the function (1) exists
in the case (7), i.e., that

r (du)/X2(u) < oo (8)

holds by virtue of (7). But this can be ascertained by an elementary argument used
by Hartman5.

In fact, it is readily verified from (7) that the Wronskian, x\' — \x', of x{t) and
\(t) is the constant 1. Hence, the derivative of x/\ is identical with — 1/X2, and so

x(t)/\{t) = const. — (du)/\2(u).

Since x{t) > 0 and \{t) > 0, it follows that

0 < const. — [ (du)/\2(u).
J <0

This proves (8).

5P. Hartman, On differential equations with non-oscillatory eigenfunctions, to appear soon.


