After (n-1) modes have been found, and the reduction of the matrix a_{r} carried out for each of them in the manner described, we must be left with the matrix

$$a_{rs} - \sum_{i \neq i} a_{rs}^{(i)} = a_{rs}^{(i)},$$

where *i* is the number of the mode left to be found. In this matrix the terms of any row are proportional to $\sum_{i} a_{si}x_{si}^{(i)}$ so the remaining *i*-th mode can be found by solving the set of linear equations

$$\sum_s a_{rs} x_s = a_{1r}^{(i)}.$$

The reductions can often be carried out with advantage in terms of the matrix b_r ; this is done by normalizing the modes so that instead of satisfying (10) they satisfy

$$\sum_{rs} b_{rs} y_r^{(i)} y_s^{(i)} = 1,$$

and calculating $a_{rs}^{(i)}$ from the formula

$$a_{rs}^{(i)} = \lambda^{(i)} \sum_{k} b_{rk} y_{k}^{(i)} \sum_{s} b_{ss} y_{s}^{(i)},$$

which is easily deduced from (8). This is particularly convenient in the most usual type of problem in which b_{r*} is a diagonal matrix—in mechanical problems, those in which the kinetic energy can be expressed as a sum of squares. If $|b_{r*}| = |m_r \delta_{r*}|$ the modes must be normalized by

$$\sum_{r} m_r (y_r^{(i)})^2 = 1$$

and then

$$a_{rs}^{(i)} = \lambda^{(i)} m_r m_s x_r^{(i)} x_s^{(i)}$$
.

After reductions corresponding to all but the *i*-th mode have been made on the matrix a_{rs} , the remaining matrix is $a_{rs}^{(i)}$ from whose rows the *i*-th mode can be found immediately.

A NORM CRITERION FOR NON-OSCILLATORY DIFFERENTIAL EQUATIONS*

By AUREL WINTNER (The Johns Hopkins University)

Let f(t), x(t), $\lambda(t)$, \cdots denote real-valued, continuous functions on an unspecified half-line, $t_0 \leq t < \infty$. If $\lambda(t)$ is positive on this half-line, put

$$\lambda^* = \lambda^*(t) = \lambda(t) \int_t^{\infty} (du) / \lambda^2(u), \tag{1}$$

provided that the second factor on the right of (1) is a convergent integral. Under this proviso, a direct substitution of (1) shows that, if $\lambda(t)$ is a solution of the differential equation $D_f(\lambda) = 0$, where

^{*}Received Nov. 17, 1947.

$$D_f(\lambda) = D_f(\lambda(t)) = \lambda''(t) + f(t)\lambda(t), \qquad (' = d/dt)$$
 (2)

then $D_f(\lambda^*) = 0$, i.e., that $\lambda^*(t)$ represents another (linearly independent) solution.

Following A. Kneser¹, let the differential equation $D_f(x) = 0$ be called oscillatory or non-oscillatory according as each or none of its solutions $x(t) \neq 0$ has zeros clustering at $t = \infty$. This alternative is complete, since, in view of Sturm's separation theorem, either every or no solution $x(t) \neq 0$ of $D_f(x) = 0$ has an infinity of zeros on the half-line $t \geq t_0$. The decision of the alternative (for a given coefficient function, f = f(t), of D_f) is fundamental in certain questions of stability and related applications².

It seems to be of both theoretical and practical interest that the decision can always be based on a criterion similar to the "norm" conditions in the theory of linear functionals and operators (Lebesgue-Toeplitz). It is a criterion the applicability of which does not involve, in principle, the knowledge of a solution $x(t) \neq 0$ of $D_f(x) = 0$, since it depends on the consideration of arbitrary functions. It can be formulated as follows:

The differential equation $D_f(x) = 0$ is of non-oscillatory type if and only if there exists some positive function, say $\lambda(t)$, corresponding to which the assignments (1), (2) define two continuous functions the product of which is absolutely integrable, i.e.,

$$\int_{-\infty}^{\infty} \lambda^* \mid D_{f}(\lambda) \mid dt < \infty. \tag{3}$$

As an illustration of how to apply this criterion, choose the arbitrary function $\lambda(t)$ to be t. Then (1) and (2) reduce to $\lambda^* = 1$ and $D_f(\lambda) = f(t)t$, respectively, and so (3) will be satisfied if |f(t)| t has a finite integral over the half-line. It follows that the absolute integrability of f(t)t (which, incidentally, is compatible with $\limsup f(t)t = \infty$ and $\liminf f(t) = -\infty$, where $t \to \infty$) is sufficient in order that the differential equation $D_f(x) = 0$ be of non-oscillatory type.

Actually, this particular sufficient condition is contained in an asymptotic result of Bôcher³. But this is not a necessary condition. In fact, other sufficient conditions result if the choice $\lambda = t$ is replaced by other choices of the arbitrary function $\lambda(t)$. Such choices can be made relative to the coefficient function, f, of D_f , rather than in a way which, as in $\lambda = t$, is independent of f.

Proof of the sufficiency. This part of the italicized criterion can be deduced from the following fact, which is a corollary of a general theorem⁴: If $p = p(t) \neq 0$ and q = q(t) are continuous functions for large positive t, then the condition

$$\int_{t}^{\infty} |q(t)| \left(\int_{t}^{\infty} |p(u)|^{-1} du \right) dt < \infty$$
 (4)

is sufficient in order that some solution y = y(t) of the differential equation

$$(py')' + qy = 0 \qquad (' = d/dt) \tag{5}$$

¹A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Mathematische Annalen 42, 409-435 (1893), p. 411.

²T. v. Kármán and M. A. Biot, *Mathematical methods in engineering*, New York and London, 1940, Chapter VII and the references on p. 322.

³M. Böcher, On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic, Transactions of the American Mathematical Society 1, 40-52 (1900), pp. 48-52.

⁴A. Wintner, Asymptotic integrations of the adiabatic oscillator in its hyperbolic range, to appear in the Duke Mathematical Journal 15, (1948).

should tend to a finite limit, as $t \to \infty$, and that this limit, $y(\infty)$, be distinct from 0. It follows that, if $\lambda = \lambda(t)$ is any positive function possessing a continuous second derivative, then the case

$$p = \lambda^2, \qquad q = \lambda \lambda'' + f \lambda^2$$
 (6)

of (5) must have some solution y = y(t) which does not vanish from a certain t onward, if condition (4) is satisfied by the functions (6). But it is clear from the definitions (1), (2) that the case (6) of (4) is identical with (3). Since $\lambda(t)$ is positive, it follows that (3) implies the non-oscillatory character of that differential equation for x = x(t) which results when $y = x/\lambda$ is substituted into the case (6) of (5).

The result of this substitution is seen to be the differential equation

$$(x'\lambda - x\lambda')' + (\lambda'' + f\lambda)x = 0.$$

Since the latter can be contracted into $(x'' + fx)\lambda = 0$, where $\lambda > 0$, it is equivalent to x'' + fx = 0 and so, in view of (2), to $D_f(x) = 0$. This completes the proof of the sufficiency of (3).

Proof of the necessity. This part of the criterion is of theoretical interest only, and its verification is straightforward. As a matter of fact, $\lambda(t)$ can now be chosen to be a solution x(t) of $D_f(x)^{\bullet} = 0$.

In order to see this, suppose that the differential equation is non-oscillatory. Then there exist a constant t_0 and a solution x(t) of $D_f(x) = 0$ such that x(t) > 0 when $t_0 \le t < \infty$. Let t^0 be any value exceeding t_0 , restrict t to the half-line $t^0 \le t < \infty$, and put

$$\lambda(t) = x(t) \int_{t_0}^t (du)/x^2(u). \tag{7}$$

Then $\lambda(t)$ is positive, since x(t) is. Furthermore, it is easily verified from (2) and (7) that $D_f(\lambda) = 0$, since $D_f(x) = 0$. Hence, in order to prove that condition (3) is satisfied by the function (7), all that remains to be ascertained is that the function (1) exists in the case (7), i.e., that

$$\int_{-\infty}^{\infty} (du)/\lambda^2(u) < \infty \tag{8}$$

holds by virtue of (7). But this can be ascertained by an elementary argument used by Hartman⁵.

In fact, it is readily verified from (7) that the Wronskian, $x\lambda' - \lambda x'$, of x(t) and $\lambda(t)$ is the constant 1. Hence, the derivative of x/λ is identical with $-1/\lambda^2$, and so

$$x(t)/\lambda(t) = \text{const.} - \int_{t_0}^{t} (du)/\lambda^2(u).$$

Since x(t) > 0 and $\lambda(t) > 0$, it follows that

$$0 < \text{const.} - \int_{t_0}^t (du)/\lambda^2(u).$$

This proves (8).

⁵P. Hartman, On differential equations with non-oscillatory eigenfunctions, to appear soon.