97

QUARTERLY OF APPLIED MATHEMATICS

Vol. VI JULY, 1948 No. 2

ENERGY DECAY AND SELF-PRESERVING CORRELATION FUNCTIONS
- IN ISOTROPIC TURBULENCE*
BY
G. K. BATCHELOR
Trinity College, Cambridge

1. Introduction. We consider those properties of turbulence in fluid of zero mean
motion which can be deduced from the assumptions of spatial homogeneity and isotropy.
The 7-components of the velocity fluctuations at two points P(x) and P’(x’) will be
written as u; and u! . The spatial separation of P and P’ is denoted by the vector

E=x"—x
of magnitude r, where

£ = 7

and repeated indices imply summation over the values 1, 2 and 3.

It may be shown without difficulty’'® that the condition of isotropy requires the
correlation between u; and u/ , where ¢ and j have arbitrary values, to depend only on
the geometrical configuration defined by ¢ and unit vectors in the 7- and j-directions,
and a single scalar function of 7°. It can be represented as the typical component of a
tensor of the second rank in the following manner:

wad = &= L& 1 (74 L), | (L.1)

where the over-bar denotes a spatial mean value, f(r) is the scalar function, and

u? =ul =u; =1 ;

8;; is the unit tensor whose value is 1 if 7 = j, and O otherwise. The triple correlation
between velocity components at P and P’ has a similar dependence on a single scalar
function;

r k
wuu, = T;

(o, (kb £yl
=y I:( o )E-'Eifk + ( 22 >(8 &+ 0iki) — .,Ek (1.2)
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The scalar function k(r) is in this case an odd function of r, of order »* when r is small.
It is clear from (1.1) and (1.2) that f(r) and k(r) are the correlation coefficients for
particular values of the indices and the &, , viz.

w?f) = @al)im;

i=r

u k() = Waub)i-i- -
All higher order correlations which involve at least one velocity component at each of
the points P and P’ depend on more than one scalar function of r.

The equations of motion of a viscous incompressible fluid contain both linear and
quadratic terms in the velocity components, and it is consequently possible to relate
the double and triple velocity correlations. Expressed in terms of the scalar functions
Sf(r) and k(r), this relation becomes the equation for the propagation of the double
velocity correlation and has the form

D e R ™

where dashes to f and k denote differentiation with respect to 7, and,t is the time. Equa-

tion (1.3) has a simple and useful form for the particular value r = 0, when it describes

the rate of decay of energy of the turbulence;
du”

2 - 12(0£11 = —
dt lom (f )r-Q

100u’? |
)\2

1.4

where \ is the length parameter previously introduced by Taylor.?

Since the difficulties of measurement become very great as the order of the correla-
tion increases, it is inevitable that Eq. (1.3) should occupy an important place in any
practical theories of turbulence. The purpose of this paper is to extract as much in-
formation from it as is possible with a minimum of further assumptions, and in particular
to deduce the rates of energy decay which are consistent with certain types of behaviour
of the function f(r). It is important to appreciate that Eq. (1.3) represents all the in-
formation about the function f(r) which we possess, and is clearly insufficient to permit
a complefe solution to be obtained. This lack of information for the determination of
correlation functions is inherent in averaged equations, and is the penalty paid for this
use of the statistical method. Our plan is therefore (a) to discuss suitable limiting cases
for which a solution of (1.3) is possible, and (b) to discuss the consequences of simple
hypotheses so that their validity can be put to the test of experiment. Types of solution
for which the function f is “self-preserving”, i.e. for which f is a function only of r/L,
where L is a length which depends on the time ¢, were introduced by v. Kdrm4n and
Howarth.! The consequent gain in simplicity of the mathematics is considerable and
it is with such solutions that we shall largely be concerned here. There is available
sufficient experimental evidence to indicate that the theoretical solutions correspond
in some respects with reality and are worth pursuing.

2. Loitsiansky’s invariant. We shall have need later of a simple deduction from the

3G. I. Taylor, Statistical theory of turbulence, Proc. Roy. Soc. (A) 151, 421-478 (1935).
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basic- Eq. (1.3), which was pointed out first by Loitsiansky.* Multiplying both sides of
the equation by r* and integrating over the range 0 to «, we find ’

O o [T )_
at(u’ ‘/; r'fdr) =0

provided that r*f’ — 0 and r*k — 0 as r — «. Physically it seems reasonable to suppose
that the convergence conditions are satisfied; then

u”-[ rifdr = A, 2.1
0

where A is a constant during the decay process.

Loitsiansky remarks that the relation (2.1) and Eq. (1.3) are consistent with an
analogy between the propagation of fu’?, and the propagation of heat in a spherically-
symmetrical five-dimensional field. In such a space the Laplacian operator has the form

Sy

V= Fre + ror’
so that the last term of Eq. (1.3) represents the effect of molecular conduction provided
that fu'® is the analogue of temperature. The first term on the right side of (1.3) must
be interpreted as the effect of convection, and (2.1) shows that this convective effect
is such as to leave the total quantity of heat constant. On the basis of this analogy
Loitsiansky describes the constant A as a measure of the total quantity of disturbance
to the fluid, which is uniquely determined by the initial conditions of the turbulence.

It is not without interest to notice the behaviour ‘of the general moment of the
function f(r). Thus ’

%(uﬂ- fo "y dr> — @ — mpu? fo " dr 4 2m — 1)(m — 4 [o "t dr (2.2)

provided that m > 1 and (*""'f)., = (*"k)» = 0. When m = 1 or 0, special formulae
are necessary, viz.

_a ,2- ° ) — ,3c ° — '2 ]
Y (u /; rfdr] = 3u ‘/; kdr — 6w’", 2.3)
2 ,2. =) ) _ 3. © I_C 2 Py fl

3 (u fo fdr] =4 fo ; dr + 8vu fo Py dr. (2.4)

Now all the experimental evidence suggests that the function f(r) is everywhere positive
and monotonic decreasing, and the signs of the integrals containing f and f’ can be
predicted with safety. There is not very much data about k(r) but measurements at
the Cavendish Laboratory show it to be everywhere negative (or zero). It must certainly
be negative for small values of r in order to give a positive contribution to the rate of
change of mean square vorticity due to random extension of the vortex lines.’ If the

4L. G. Loitsiansky, Some basic laws of isotropic turbulent flow, Central Aero- and Hydro-dynamic
Institute, Moscow, Report No. 440, 1939; also N. A. C. A. Tech. Memo. 1079.

5G. K. Batchelor and A. A. Townsend, Decay of vorticity in isotropic turbulence, Proc. Roy. Soc. (A)
190, 534-550 (1947).
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signs of the integrals involving k are predicted on this basis, Egs. (2.2), (2.3) and (2.4)
show that

%@Wfrvm>>o i m> 4
0

=0 if m = 4, : 2.5)

<0 if m=3,2,1,0.

These results have a bearing on the behaviour, during decay, of the spectrum func-
tion describing the spatial structure of the energy of the turbulence field. For if u'*- F(u) du
is the amount of energy lying within a small range about the wave number y the functions
f(r} and F(u)/2(2x)"/* are Fourier transforms,® and

Fu) =4 jw cos 2mur- f(r) dr. (2.6)

The relations (2.5) thus become, when m is even,

a (9_2) ] >0 >
Y [u ol < 0 if m Z 4. 2.7)

If the energy spectrum function is expanded in powers of y?, viz.

772 4 4 12
WP = uFO) + 4 o (2F) £ (2T 4
4! 3”4 0
then the effect of decay is to decrease the coefficients of u'® and u? to leave the coefficient
of u* constant and to increase all other coefficients.

3. Self-preserving solutions at Reynolds number which are not large. By Reynolds
number which are not large is meant a state of affairs in which A is not small compared
with other lengths associated with the function f(r). Since the length A is already present
in the basic Eq. (1.3) (in view of the expression for du’?/dt), it will be convenient mathe-
matically to use A as the scale factor L in any solution for f(r) which preserves its shape
over a range of  which includes small values of r. Several possibilities can be considered,
the simplest of which is that the correlation functions preserve their shape for all values
of r.

- The hypothesis whose consequences are to be examined is that

o =1, k@) = k@) @.1)
for all values of r, where ¢ = r/X. Equation (1.3) then becomes
af _ 1w\ (dk |, 4k df  4df
=57 - »av G =35 (d¢+¢)+<d¢2 ¢d¢)

or, in terms of.the number R, = uw'\/»,

(Z;f’ vit Tt 5f) + 2:;% (v gD ok (d:l/ + :17/@) =0.(3.2)

¢G. 1. Taylor, The spectrum of turbulence, Proc. Roy._Soc. (A) 164, 476-490 (1937).
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Each of the expressions within circular brackets is a function of ¢ only, while the co-
efficients outside the brackets depend only on ¢.

It is worth noting that the second coeﬁicient viz. A\* dR,/2vR, dt, is a constant for
a very general class of energy decay law. If u'* decays as some power of ¢, the energy
equation (1.4) shows that the decay laws will be
=2

~t, X"—l—g”t Ry~ 3.3)

u

and hence .

A dR, _ 51 —n)
21/R)‘ dt - 2n '

3.4)

An exponential decay of «'* also makes this factor constant. When the second coefficient
is constant, the first two groups of terms in (3.2) are functions of ¢ only and the equation
can only be satisfied by

R, = constant.

This leads to n = 1 provided the constant value of R, is not zero (in which case we should
haven > 1,¢ = ®). When the energy decay law is not such as to make \* dR,/2vR, dt
constant, there is another way in which Eq. (3.2) can be satisfied. This alternative
method is suggested by the work of Sedov,” and will be discussed in section 5.

Now the law of energy decay is already fully determined by the assumption of self-
preservation of the correlation function f for all values of r. For in this case the condition
(2.1) becomes

W [ v e = A

provided that the integral converges, and thence u'*\® is constant during the decay.
The energy equa,tion then gives the decay laws as

_ 4
W= AL, N=at, B =t 3.5)

where A is a constant and ¢ is measured from the instant at which 1/4’ = XA = 0. This
is a power law of energy decay (with n = 5/2) and as shown above, Eq. (3.2) can only
be satisfied when R, is constant. Since R, also varies with ¢ according to (3.5), the two
requirements can only be consistent if

t=°°, R)‘=O

Under these circumstances Eq. (3.2) becomes

&’f | df -
i ¢(¢+¢)+5f 0 .36
and the solution which makes f = 1 whenr = 0 is
f@) = e 3.7

L. I. Sedov, Decay of isotropic turbulent motions of an inmmws%le fluid, C.R. Acad. Sci. U.R. 8. S. -
42, 116—119. (1944).
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The requirement R, = 0 shows that the triple correlations have no influence on the
double correlations under the conditions for which a completely self-preserving solution
is possible.

Thus it has been shown that a solution in which the function f is completely self-
preserving is only possible at large decay times and is described by (3.5) and (3.7).
This suggests that we should examine conditions as ¢ — « in order to see if such a self-
preserving solution does in fact exist there. It is not difficult to see at once that the
answer is likely to be in the affirmative. The correlation function f(¥) certainly has
the same (parabolic) form for all values of ¢ for ¢ < 1, and the only alternative to an
approach to a definite shape as ¢ — « is an oscillation of the remaining part of the
curve. Such an oscillation does not seem appropriate to the problem.

However, more definite evidence that f(y) is independent of ¢ when ¢ is large can be
obtained from the basic equation. For consider (2.3) in the form

k) af"c ' 1')_3?»’2 f‘” r_gu’
at(R* .,,xf_dx =7 B kdy =6
All the measurements of f(r) which have hitherto been made have shown it to be every-
where positive and we may safely assume the expression within brackets on the left
side to be positive and, in view of the existence of a parabolic variation for r/A < 1,

non-zero, for all values of ¢. Also, as discussed in section 2, the evidence is that % is
everywhere negative (or zero), so that

3 (p [T r) _au”’
at(R*fo Lial)< —6¥ 3.8)

Suppose now that when ¢ is large, the decay of «’ and A conforms to the general laws
(3.3). In the first place, » cannot be less than or equal to one, for (3.8) then requires
Ry [o v/Nf d r/\ to decrease indefinitely and to become negative as ¢ — «. Secondly,
the inequality (3.8) requires the expression in brackets on the left side to vary as some
power of ¢ not greater than 1 — n, whereas the factors in this expression show that it
varies as some power of ¢ not less than 1 — n. Hence the power can only be 1 — n and
Jo r/\ f d r/\ tends to a constant when ¢ is large, which shows that f tends to become
a function only of r/\. Notice that the assumption £ < 0 is over-sufficient; the deduction
is only rendered invalid if f5 k d /X is positive and increases as some power of ¢ not less
than (n — 1)/2. :

It is thus possible to make quite definite predictions about the turbulence when ¢
is large. Making assumptions about f and k which are well supported by experiment,
and assuming that the energy decay follows a power law (3.3), it can be shown that
f(r) preserves its shape when ¢ is large. Then Loitsiansky’s invariant relation shows that
the decay laws must be as in (3.5). Finally the fundamental equation for f gives the
solution (3.7). The dependence of these deductions on a decay law of the type specified
by (3.3) when ¢ is large does not seem likely to be critical.

4. Solutions obtained by neglecting the triple correlation. Two Russian authors,
Loitsiansky* and Millionshtchikov,® have each discussed the solutions of Eq. (1.3)
which are obtained when the term describing the effect of the triple velocity correlation

8M. Millionshtchikov, Decay of homogeneous isotropic turbulence in a viscous tncompressible fluid,
C. R. Acad. Sci. U. R. 8. 8. 22, 231-237 (1939).
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is ignored. Their work is an extension of the ‘“small Reynolds number’’ solution first put
forward by v. K4rman and Howarth.' There is considerable indirect evidence for the
belief that neglect of the triple correlations is only permissible at a late stage in the
decay of turbulence so that.the resulting solutions ought to be compared with that
. deduced in the previous section for £ large.
The equation to be solved is

auf _ <m éM)
dt =2 a’ +r or /)’ 1)

which is similar to the equation for the propagation of heat in a spherically-symmetrical
five-dimensional field in which there is no convection. Using this analogy the solution
is known to be

wif = —1 f f]f F(s; 0)"">" duy dz ds dzs das 4.2)

- (81I’Vt)5/2
where

F(r, t) = u”f,

n=1

5 5 5
92=Z(£,,—:c,.)2, 72:2123’ 82=le:.

The law of energy deéay is obtained by putting r = 0 in (4.2), i.e.

W= (81r:t = [[[[[ e, 0 7 o, da, dzy iz, das

1 f ° —83/8vt 4
=— F(s, 0 * ds. 4,
Thus, in general, the solution depends upon, and is uniquely determined by, the function
F(r, 0).
If the initial state of the turbulence is such that

F@r,0) = 0, when 7r >0,

=0, when r =0,

(4.4)
[ Fe, ontdr = a
0 ~
where A is finite, then the integrals can be evaluated giving
. ' A :
w? = —2 ()2 4.5
sen” Y “9

flr, t) = 7% = g 4.6)
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Loitsiansky describes these initial conditions as referring to a “point source of strength
A” since the analogous problem in the five-dimensional field is simply the spread of heat
from an initial point source. Millionshtchikov has also obtained this special solution
and remarks that it describes the turbulence which exists subsequent to an initial ran-
dom distribution of concentrated line eddies, provided that the effect of triple correla-
tions is ignored. Since the triple velocity correlations cannot be neglected in the early
stages of the decay when v’ is not small compared with the characteristic velocity of
the turbulence-producing device, Millionshtchikov’s interpretation of the initial condi-
tions (4.4) cannot be regarded as having physical reality.

v. Kérmén and Howarth considered the particular set of solutions of (4.1) which
are functions of r/(vf)'/* only, i.e. a self-preserving solution was assumed. The solution
(4.6) is the only solution of this kind if certain conditions concerning the behaviour of
f(r) are accepted. v. Kdrman and Howarth gave a family of self-preserving solutions of
(4.1) with the quantity o, = »t/A\? as parameter, viz. ’

f@) = 25O 6P/9), @7

where x = r/(»)"? and M,,,.(z) is the same solution of the confluent hypergeometric
equation as that defined by Whittaker and Watson (Modern analysis, 1927, p. 337)
and denoted by this symbol. The solution (4.6) corresponds to the particular value
a = }. Now when a < 1, the expression (4.7) is proportional to x*°* when x is large.
If the restriction that the various moments of f(r) should all be finite-is accepted on
intuitive physical grounds, then certain values of o can be rejected. In particular, if
the fourth moment [5 r* f dr (which occurs in the invariant of Sec. 2) is required to be
finite then all values of « less than 4 must be rejected.

On the other hand, when o > 1, the expression (4.7) becomes negative for certain
values of r since it has the expansion )

I = (2.5 — 100)3.5 — 100) --- 2.5 — 10a +n — 1) ()"
6 = {1 +2 ! 2.5B5) - @5 +n =D (8 )} (4.8)

valid for all finite values of x (Whittaker and Watson, p. 337). (Note that although
the fourth moment [g r* f dr converges when « > 1, the invariant relation of section
2 cannot be employed to obtain a definite value for a and thence a definite decay law,
because the solution makes the fourth moment vanish and A is constant whatever the
energy decay law). Negative values of f have never been measured, so that there are
some physical grounds for rejecting values of a greater than 1. Thus when these restric-
tions are applied, v. Kdrmé4n and Howarth’s family of self-preserving solutions reduces
to the single solution (4.6). Both restrictions are of course implicit in Loitsiansky’s
analogy with the propagation of heat in a spherically-symmetrical five-dimensional field.

Let us return now to the general solution (4.2), with its associated decay law (4.3),
which satisfies the Eq. (4.1) obtained by neglecting the triple correlation term. When
tis so large that »t > s® for all values of s for which F(s, 0) is large enough to contribute
to the integrals, the integrals in (4.3) and (4.2) simplify. Thus when { — =,

ro L [ s, 0t ds
™ 482n) ot mfo (s, 0)s
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and

2 1 ® -73/8vt 4
o’ —_— F(s, O ds
u - 48(21!')1/2(Vt)5/2 ‘/; (8 )e :S 4

. -_yr3
ie, foeT¥,

These limiting forms show that if the correlation f(r, f) and turbulence intensity u'* are
calculated on the assumption that the triple correlation is without effect, the solutions
obtained tend to the forms (4.5) and (4.6) as { — « whatever the choice of conditions
at.t = 0. The common limiting form is a self-preserving solution, so that there is here
further support for the contention of the previous section that a self-preserving solution
does exist when ¢ is large, and that it is given by Egs. (4.5) and (4.6).

In a later work® Millionshtchikov made an attempt to determine the effect of triple
correlations at decay times which are not large, using a reiterative method. However
his attempt is based upon the existence of the solution (4.6) as a first approximation
and leads only to solutions which have the same self-preserving character. Since a self-
preserving solution has been shown to be possible only when ¢ is large, it is questionable
whether Millionshtchikov’s approximate solutions at decay times which are not large
have any significance.*

5. Partially self-preserving solutions at Reynolds number which are not large. It
has been seen that a correlation function which is completely self-preserving can only
occur when the decay time is large. On the other hand, it is known that some measure
of self-preservation exists when ¢ is not large. The function f is always parabolic near
r = 0. Recent experiments® have indicated that the expansion of f in powers of r/\ as
far as the term of fourth degree, and of k as far as the term of third degree, are inde-
pendent of ¢ at decay times which are not large. This suggests that we should explore
the consequences of assuming partially self-preserving solutions for the correlation
functions. We therefore write

JO) =1W), k¥ =k, ¥=53

for a range of values of r, 0 < r < I, where [l is an unknown length. From the above
evidence [ must be at least as great as the maximum value of r for which a fourth degree
polynominal gives a good representation of f(r). The fundamental Eq. (1.3) again reduces
to the form (3.2) for the restricted range of r, viz.

nwyhp S, LN dRy o Lp (0 40)
(f +¢f+2f+5f> 28, dtx(¢f)+2Rx(k +¢k)._o. (3.2)

Since the hypothesis leaves arbitrary the behaviour of the correlation functions at
large values of r, we cannot make use of the invariant relation of Sec. 2. The energy

M. Millionshtchikov, On the theory of homogeneous isotropic turbulence, C. R. Acad. Sci. U. R. 8. S.
32, 615-621 (1941).

*A further criticism of Millionshtchikov’s work is that he has omitted to take into consideration
the correlation between two velocity components and the pressure when determining the relation between
triple and quadruple velocity correlations. His idea of determining quadruple velocity correlations from
the approximation that the relation between double and quadruple correlations is as it is for a Gaussian
distribution of the sums of velocity components at two points seems to be useful and to warrant further
exploitation.
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decay laws are therefore not prescribed as they were in the case of completely self-
preserving solutions and there will be a degree of indeterminacy in the deductions.

It was mentioned in Sec. 3 that there are in general two methods of satisfying Eq.

(3.2) for non-zero ranges of ¥ and ¢. According to the first method, in which the energy -
decay follows a power law, R, is constant and for non-zero values of this constant we
haven = 1, i.e.
10
By
where B is a constant. The functions f(¥) and k(y) are in this case connected by the
equation

w™? = Bt, N =10, R,= (5.1)

7 + f( 'l') + 5f + 5 Rx(k’ +3 k) =0 (5.2)

provided 0 < r < I. The rela,tions (5.1) and (5.2) become identical with Dryden’s de-
ductions’ from the postulate of self-preservation when his scale factor L is replaced
by the length used in the present analysis, viz. \; Dryden took Eq. (5.2) to be valid for
all values of r but we have already seen that the assumption of complete self-preservatlon
leads to a quite different set of results.

It does not seem possible to check Eq. (5.2) relating f and %, since measurements
of k are difficult to make and no results have yet been published. However, measure-
ments of ' at different stages of decay have frequently been made, and the validity
of (5.1) can be assessed. The evidence for the law of energy decay has been discussed
by Dryden."* The data from different sources are not wholly consistent, but inasmuch as
any one law does describe the experimental relations, it is u'~> ~ ¢, where 7 lies between
one and two. In more recent experiments at the Cavendish Laboratory, Cambridge,®
the decay of \ has been measured simultaneously with that of %’ and the energy equation
has in this case provided a check on the consistency of the two sets of measurements.
It was in fact found that the relations (5.1) were obeyed to a quite high degree of ac-
curacy for the decay range 40 M/U < t < 120 M /U, where M and U are the periodic
length and velocity associated with the turbulence-producing grid and were varied over
the range 5.5 X 10° < UM /v < 2.2 X 10*. Under these same conditions it was found, as
‘mentioned above, that f(r) and k(r) were self-preserving during decay at least as far
as the terms in 7* and 7° respectively. The above experiments are therefore quite con-
sistent with the postulate of limited self-preservation and with the deductions obtained
by using the first method of satisfying Eq. (3.2). A point left open is the value of I,
which presumably can be determined by the region of validity of the relation (5.2).

According to the second method of satisfying Eq. (3.2) (see Sedov’), the coeﬁiments
of bracketed terms therein are related by

)\2 dR)\ ’
R dt =aR\+ b (5.3)

where a and b are constants. For solutions of this equation which do not make R, con-
stant, f and k£ must then satisfy the equations

WK, Dryden, Isotropic turbulence in theory and experiment, v. Korman Anniversary Volume on Ap-
plied Mechanics, 1941, pp. 85-102.
1uH. Dryden, A review of the statistical theory of turbulence, Q. Appl. Math. 1, 7-42 (1943).
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by by (5D _
I+ + (3 )y 457 =0, (5.4)
4
Wt k= —ayf, (5.5)

provided 0 < r < . Apart from the constants a and b, this method of solution provides
unique determinations of the correlations f and k& within the restricted range of r.*

Consider the decay law described by (5.3). This equation is to be solved with the
aid of the energy equation in the form

2\ dRy _ dN'/y
B dt =~ ar 10 (5.6)

The solution cannot be obtained explicitly, and is given by

2 2
)\2 A VR)‘

v - K(a + b/R)‘)w/b - .172-

where K is a constant of integration, and

dR b 1+10/d
= Ka+g) (5.8)

It will be seen in a moment that @ is necessarily negative and it is then evident from
(5.7) that b must be positive if 4’ is to become large for some values of R,. The nature
of the decay relations specified by (5.3) is as indicated in Fig. 1. The variation of u’

(6.7)

Rl 7/ SR N —

Fia. 1.

has the general features of measured energy decay curves. R, increases with decay time
and asymptotes to a constant value —b/a. It follows that '~ and A\? asymptote to the
values (—a/b) 10t/v and 10 ¢ respectively as ¢ increases.

*This might be regarded as a hint that the solution is physically impossible. However I have not
been able to find any definite anomalies.
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It might be argued that this method of satisfying Eq. (3.2) has thus far led to pre-
dictions which are not inconsistent with experiment, since we cannot be sure that the
asymptotic variation (Ry = constant) does not occur over the range of decay times
used in the experiments mentioned earlier. But the Eqgs. (5.4) and (5.5) determining
the functions f(¢) and k(¢) make possible a further comparison with experiment. There
is available sufficient experimental evidence to determine the value of the constant a
in (5.5). It has been found® that when r is sufficiently small, the function k(r) has the
form

v = - 1s(2), 6.9

where S is an absolute constant (of value about 0.39) for the ranges of decay times
and mesh Reynolds numbers used in the experiments. There are also theoretical reasons,?
derived from Kolmogoroff’s theory of locally isotropic turbulence,'® for believing that
S is an absolute constant whenever the Reynolds number is sufficiently high. Thus
comparison of the coefficients of powers of #* in (5.5) shows

0= — %S. (5.10)

Then if R{ be written for the asymptotic value of the Reynolds number R, , = u')\/i,
the value of b is

_7

b= —aRf = 6 SRS . (5.11)
Changing the variable of (5.4) to x, = ¥/(@)"/?, where
1 1

. a

T 10+ 20 10 + 7SRY/3
the equation for f becomes

fr 4+ f'<$ + i‘) + 5af = 0. (5.12)

v. Kdrm4n and Howarth' have pointed out, in a slightly different context, that the
solution of this equation is related to the hypergeometric function and that the solution
which satisfies f = 1 and f’ = 0 when r = 0, can be written'

- r'(/2)
o) = r(10a)1(5/2 — 10a) J,

when, as is here the case, « < 1. Knowing the value to which %'A/» tends according to
this method of satisfying the requirement of limited self-preservation of the correlation
functions, it is thus possible to determine f. Figure 2 shows not f, but the related double
correlation function g, which, in the notation of Seec. 1, is given by

! TlOa—l(l _ T)3/2—10ae-(x'f)/8 dr (5.13)

uﬂg(r) = (ucu;');fio-

12G. K. Batchelor, Kolmogoroff’s theory of locally isotropic turbulence, Proc. Camb. Phil. Soc. (to
be published). :

BA, N. Kolmogoroff, The local structure of turbulence in an incompressible viscous fluid for very large
Reynolds numbers, C. R. Acad. Sci. U. R. 8. S. 30, 301-5 (1941) and 32, 16-18 (1941).
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g(r) is easier to measure in practice, and is related to f(r) by the continuity equation

_ r 9f(r) '
90) = &) + 5 2L (5.14)
g has been calculated from (5.13) and (5.14), in part by numerical integration and in
part by the use of an asymptotic expansion of the integral, for a number of values of
R{ comparable with those found in the experiments at Cambridge. The largest value,
viz. 44, is the value of 4’\ /v measured at intermediate decay times with a mesh of circular
rods at 1’ spacing and a wind speed of 42 ft/sec.

1.0

0.8

£(r/»)

04 \

A
\ \\’—
. N o ————
0
) 6
0 1 2 3 4 o r/A

F1a. 2. Solutions of d?f/dy? + (4/¢ + 3(5 + b)y) df/dy + 5f = 0and g = f + iy df/dy,
where ¢ = r/\, b = 7SR{/6, S = 0.39.

Mr. A. A. Townsend and the author hope that it will soon be possible to present
measurements of g(r) during decay under different conditions in order to determine the
validity of the solution (5.13). Assuming that the measurements show «'A/v to be con-
stant at decay times which are not too large and that self-preservation of the function
f(r) during decay occurs over a limited range 0 < r < [, then agreement between ex-
periment and the curves of Fig. 2 over this same range* of values of r would show that

*A hint concerning the possible range of validity of the curves in Fig. 2 is provided by the require-
ment, deduced from (5.14), that the complete function g(r) obeys the relation

j; i rg(r) dr = 0.
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the second method of satisfying Eq. (3.2) is here valid. Necessary consequences are
that & is given by (5.5), i.e.

i =2sv [[wlay 0s<r<p (5.15)

where f is given by the expression (5.13), and that at decay times which are sufficiently
small the decay of ' is such that «'A/» increases from a small value to its asymptotic
value R{ . On the other hand, lack of confirmation of the curves of Fig. 2 would show
that the first method of satisfying Eq. (3.2) is valid, i.e. that u’A/» is constant over the
whole of the decay range for which limited self-preservation holds and that k& is de-
termined by (5.2) as

R = A%+ v1) ~sv [ wia (5.16)

The function f(y) is not prescribed by this method of satisfying (3.2), except in the
particular case mentioned below.

The case in which R, , or Ry in the second method, is very small (but constant) is
particularly interesting, for the two methods of satisfying (3.2) then lead to identical
approximate equations for f(¢¥), viz.

5”’) + 5 = 0. (5.17)

j‘ll _I_ f/(
The solution is shown in Fig. 2 and it can be predicted that the correlation function
f(r) will approximate to this shape at low Reynolds numbers of turbulence over the
range of values of r for which this same correlation preserves its form during decay.
6. Solutions at high Reynolds number. (a) No assumption of self-preservation. Using
the energy Eq. (1.4), the basic Eq. (1.3) can be written

We compare the orders of magnitudes of the two terms

’
Y
When r is sufficiently small for f to be represented by the parabola 1 — r?/2)\?, these
terms are of equal order of magnitude, however small A may be. Now when the Reynolds
number of the turbulence is increased observation shows that the correlation curve
does not change appreciably outside the parabolic region, the change being confined to
a diminution in the value of A. The first of the two terms will therefore become relatively
large at high Reynolds numbers for values of r lying beyond the parabolic region, and
the approximate form of (6.1) is

o+ 8) 2 e

It is possible to integrate Eq. (6.2) if r is further restricted to be sufficiently small ‘
for the approximation f = 1 to be valid. In this case,
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4k 10» 10
4 —_— = - =
o+ ! TR, (6.3)
and the solution which makes k(r) vanish at the origin is
ko) = — = 2L (6.4)
)\

The range in which. (6.4) can be expected to a,pply is rather restricted. In the first place,
the Reynolds number must be large enough for (6.2) to apply. r must be large enough
to lie outside the parabolic region of f(r), but in view of the requirement of high Rey-
nolds number this is not an important limitation. More important is the requirement
that r should be small enough for the value of f to be close to unity. The meaning of
(6.4) is evidently that at large Reynolds numbers, the region near the origin in which
k(r) is cubic becomes small and the curve tends to a straight line with a slope which is
determined by the turbulence Reynolds number R,. This dlscussmn is substantially
that already given by Kolmogoroff."®

(b) Self-preserving solutions. Upder the assumed conditions of high Reynolds num-
ber, the dissipation length parameter A is small compared with other lengths associated
with the turbulence. In the limit, A is zero and the tangent to the correlation function
f(r) at r = 0 is not horizontal, but makes an angle with the abscissa which is probably
90°. In discussing self-preserving solutions at high Reynolds numbers it is no longer
possible to use A as the reference length and some other length L associated with f(r)
will be employed. We specifically permit A/L to vary during decay, since we should
otherwise merely repeat the analysis of Sec. 3.

The present hypothesis is thus

10 =160, k) =k, x=7 69

for a range of values of r to be specified later. The reference length L must of course
be defined by values of the function f(r) within the range of r for which (6.5) is to hold.
The basic equation (1.3) becomes

LdL g__ ( 4lc> (dzf 4df)
f 2dt X dx RL dx + + dx* + x dx (6.6)
where R, = u’L/v. '

L/\ is large under the assumed conditions, and the term (d°f/dx*> + 4/x df/dx)
should be neglected by comparison with the term 5fL?/A\* in order to be consistent
with the assumption that the non-self-preserving parabolic region near the origin is
infinitesimal in extent. Hence (6.6) becomes

LdL 4k
Eo+E%om +r(r +2) =0 6.7
Equation (6.7) will be satisfied if the three coefficients, which are functions only of
t, are proportional, i.e. if A
R, = A L*/N, . . (6.8)

LdL

o = BR.. (6.9)
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These are the equations derived by v. Kdrmén' in a discussion of self-preserving solu-
tions at high Reynolds number. The equation connecting f and & becomes

10f + ABxf" + A(k’ + 3 k) -0 (6.10)

As before, it is also possible to satisfy Eq. (6.7) in the manner suggested by Sedov,’ but
in this case there are reasons for rejecting this alternative. The appropnate relation
between the coefficients is

2
10—% a9@+ bRy, , . (6.11)

where a and b are constants. For solutions of this equation which do not make L dL/v dt
proportional to R, , the functions f and k must then satisfy

af +xf’' =0, . (6.12)

bf+k'+§k=o.  (6.13)

However Eq. (6.12) has no solutions such that f = 1 when y = 0 and the method of
satisfying (6.7) must be rejected.

v. Kérmén’s Egs. (6.8) and (6.9), and Eq. (6.10), therefore appear as necessary
consequences of self-preservation at high Reynolds numbers. The meaning of (6.8)
becomes clear when we substitute for A in the energy equation to obtain

du’® 10 v’

a ~ " 4L

This equation shows that the quantities ' and L may be considered as characteristic
of the whole turbulence in a calculation of the work -done against Reynolds stresses, as
indeed is to be expected when the correlation functions preserve their shape during
decay. Perhaps less to be expected is that this expression for the energy decay remains
valid (as will be seen later) when the correlation functions are only pa,rtla,lly self-pre-
serving.

When r is small and f may be replaced by unity, Eq. (6.10) becomes

which is identical with Eq. (6.3) derived without any assumption of self-preservation.
Clearly the general solution (6.4), viz.

27
R\ N v
is self-preserving with L as the unit of length when the decay law (6.8) holds.

The decay equations (6.8) and (6.9) contain three variables, L, A, 4’ and may be
solved with the help of the energy equation (1.4). The differential equation for L is

2 2
1L _ 5 (@5> , 6.14)

k(r) = —



1948] ENERGY DECAY IN ISOTROPIC TURBULENCE 113

and has the solution*

t (AB)/(5+AB)
L= L"(?.?) (6.15)
Then from (6.8) and (6.9)
l _ M (-t—>s/(5+.43) 1 (L)ﬁ/(smm
W = AL, \ty Y , (6.16)
A = (5 + AB)t, (6.17)

where L, and u} are the values of L and »’ at ¢t = ¢, .

It is at this stage that we must be more specific about the range of values of r over
which self-preservation is to be postulated. If the correlation functions are completely
self-preserving, Loitsiansky’s invariant relation (2.1) shows that

w’L® = constant, (6.18)
and we must have
AB = 2,

as has been pointed out by Kolmogoroff.'* The decay laws then become

_I_/_ _ £)2/7 % _ (5_)5/7 s _
L, - (to ’ W t ’ A= Nt (6.19)
The corresponding relation between f and k is, from (6.10),
10f + 2xf" + A<Ic’ + %k) =0 (6.20)
which can be integrated to give
2 < 2L, ) r
= — 2 f= (=2}l 6.21

At the present time, we have not got sufficient evidence at high Reynolds numbers of
turbulence to determine the validity of the decay laws (6.19) and the correlation relation
(6.21).

If, on the other hand, the hypothesis of partial self-preservation only is made, the
value of AB remains arbitrary and deductions about the decay laws finish at the rela-
tions (6.15)—(6.17). We can consider one or two consequences of particular values of
AB. The assumption of large Reynolds numbers entered the analysis via the postulate
that L/X\ is large. Since (6.15) and (6.17) show that

L L (t )(AB-5)/(2(5+AB))
0

X[+ ABpt]” \b ’ (6.22)

b
the subsequent behaviour of L/\ depends critically on the sign of AB — 5.

*v. Karmén! has written the exponent of the solution in error as 5/(5 + AB).
4A, N. Kolmogoroff, On degeneration of isotropic turbulence in an incompressible viscous liquid,
C. R. Acad. Sci. U. R. S. S. 31, 538-540 (1941).
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If AB > 5, L/\ (and also «’'L/v) increases and the assumed state of affairs applies
with ever-increasing accuracy. A state of turbulence in which the Reynolds number
uw'L/v increases indefinitely—although the energy decreases—does not seem possible,
and an argument of the kind used in Sec. 3 does in fact confirm this impression. Equation
(2.3) can be written

O [(rpan)3Wlp [T 1 _ 6
6t<RLfo Lde)_ ; RLfo T (6.23)

Suppose that when ¢t — «, we may write

f:%fd%rvt“, f:kd%~tﬂ

and the decay laws (6.17)-(6.19) are valid. Replacing the terms of equation (6.23) by
their orders of magnitude in ¢,

O(t(ZAB—IO)/(5+AB)+a—l) ~ O(t(AB—15)/(5+AB)+ﬁ) + O(t(—lo)/(5+AB))

In the present analysis the viscous term (i.e. the last on the right side) is assumed to
be without effect, so that the remaining terms must be of equal order, i.e. « = 8. More-
over, with the assumption made previously that [§ k dr < 0, the term on the left of
(6.23) must be negative and consequently

10 — 2AB
*< 5% 4B
The first term on the right side of (6.23) thus varies as a power of ¢ which is less than
(—1), and the viscous term will only be of smaller order if AB < 5. Since L/ increases
indefinitely with ¢ when AB > 5, we have here an inconsistency which prohibits such
values of AB except at small values of ¢.
The case AB = 5 leads to the decay laws

wi~t L'~ =10t

Since L/ is constant, there is no tendency for the approximation on which the solution
is based to become invalid as ¢ increases. Nevertheless such decay laws cannot persist
indefinitely. When ¢ is large, the first term on the right side of (6.23) must vary as some
power of ¢ not less than (—1) if the viscous term is not to become dominant; however
such a variation with ¢ requires (¢ (r/L)fd(r/L) to approach — «, which is impossible.

Finally, when AB < 5, L/\ diminishes as ¢ increases so that there comes a time when
the postulate of high Reynolds number ceases to be valid; the case AB = 2 deduced
from complete self-preservation is in this category. The system is here naturally unstable,
whereas if the case AB > 5 occurs at all some secondary factor disturbs the system
before ¢t becomes large. Thus none of the regimes deduced for large Reynolds number
are possible for indefinitely large times of decay.

7. Conclusion. The various hypotheses discussed in the last three sections, and the
deductions made from them, are summarized in the following table.
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Hypotheses
or conditions Reynolds number not large Large Reynolds number
2r
. . k(r) = — RiX
for r so small that f(r) = 1
Wi~ N =,
o f) = _
where ¢ = %
_ complete self- W T [P 7, N = Tut

preservation of
f(r) and k(r)
during decay

Only possible when ¢ — o ; see
entry above.

)

Hy) - - 2(2) 24(5)

self-preservation
of f(r) and k(r)
for0 <r <l

Either
1) w™ ~ ¢,

ot r(E+ %) + s

N o= 10wt

+ 1k +28) =0

2 12
o<r<l
or
. b 10/b
2 u’ = Kv<a+a) R
1 b —-1-10/b
t=Ef(a+1—f:) dR,
woa ool i)
s+
oo
—2 ___J)f=o0,
+(10+0.91R{f

‘ 0.46 (¥ '
k = — Sfr d ,
¥) - fo vifdy

b

where R{ = — 0<r<l.

In either case,

ot r(E+ %) + 51

=0 o0<Lr<

when R, or R} =

10/(5+AB) 2 24B/(5+AB)
,L*~t

wi~t ,

N = (5 + ABWt
10f + ABxf’

+A(k'+§k)=o

Wherex=%, 0<r<l
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In conclusion, it should be noted that even if the deductions listed in the table are
found to be in agreement with the appropriate measurements, the analysis of this paper
does not by any means constitute a solution to the problem of the decay of isotropic
turbulence. All that can be inferred from agreement with experiment is that the decay
process takes place in a certain manner, for example, with self-preservation of the
correlation functions for a certain range of r and all that this implies. (The deductions
about the turbulence as { — «, or when r is small and the Reynolds number is large,
are exceptions to this statement since no hypotheses were required in these cases).
In other words, the hypotheses of the above table are mathematical in origin and, so
far, have no physical raison d’étre. The task now is to find physical reasons why the
decay process for ¢ not large takes place as it does; indeed this might be said to have
always been the chief problem of research on isotropic turbulence. Kolmogoroff’s simi-
larity hypotheses'®''* are physical notions which promise to “explain’ very success-
fully the structure of the turbulence (at high Reynolds number) at any instant. When
we obtain equally convincing physical ideas about the way in which the governing
parameters of this structure change from instant to instant, then our progress in the
problem of isotropic turbulence will be considerable.
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