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THE STABILITY EQUATION WITH PERIODIC COEFFICIENTS*
By HIRSH COHEN {Haifa, Israel)

In a large number of physical problems involving periodic motion, dynamic stability
considerations result in stability differential equations which have periodic coefficients.
In particular, if the physical system is described by a non-linear second order ordinary
differential equation, a second order equation of the Floquet type appears. That this
is not an isolated case becomes apparent if one reviews the large volume of non-linear
mechanics literature of the past few years. The problem to be discussed in this note is
even more specialized than the one just introduced but the same review through the
literature will reveal that it is an important case. This is the stability problem which
results when the non-linear element has small effect on the system, i.e., when the re-
sultant motion is near to the motion of the linearized system.

As an example consider the van der Pol equation

y" - «(i - y)y' + y = o (I)
where primes refer to differentiation with respect to t. If y is taken to be of 0 (1) then
e « 1. The usual stability considerations involve the addition of a small (of order e)
time-dependent function, v(t), to an exact or approximate solution yn(t). On substitution
into (1) of y = y0 + v(t), the equation of first order in v(t) is

v" - 6(1 - yl)v' + (1 + 2ey0y'0)v = 0. (2)

If the solution is to be a periodic approximation to y, then y0 is periodic and (2) repre-
sents an example of the general equation dealt with herein, namely

u" + ep{t)u' + = 0, (3)

where u is the disturbance function being used to "test" some system, and 'p(t) and
qi(t) are periodic functions of period 2ir/co..

It can be seen immediately that the Mathieu equation is a special case of (3). Further-
more, it would appear useful to remove the first order term in (3) and thus reduce it
to at worst a Hill equation. This may be done by the substitution

u = v(t) exp -If Pit):dt (4)
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with the resulting equation in v

v" + v + €?,(<> = 0, (5)

and is in fact the method employed by McLachlan [1].*
The idea here, however, is to work directly with (3). It was found in dealing with

the stability of subharmonics of the forced van der Pol equation [2] that the transforma-
tion (4) and the resulting Hill equation (5) were cumbersome to work with when the
desired information was only whether u(t) was a function which increased, decreased,
or remained periodic with time. (This, of course, is what is meant here by stability. If
the small disturbance u(t) grows with time, the original physical system is said to be
unstable).

The following approach will be adopted: An analysis due originally to Poincare but
used in the form given by Friedrichs [3] will be applied to (3) to discover if periodic
analytic solutions to (3) exist. From the general Floquet theory [4] and the theorems
of Haupt [5] for the Hill equation we are led to expect that these periodic solutions will
form the boundaries between the stable and unstable regions. Once assured that there
are periodic analytic solutions (analyticity in t is implied by the general existence
theorems; it is only the periodicity of these analytic solutions that is tested), the solution
u(t) is expanded in a power series in e. This last named step will again produce a purely
periodic solution but will also produce the conditions on p(t), q, (I) and co for which stable
solutions exist. The feature of this analysis which may be novel is that it is shown that
the periodic coefficients need not have exactly the linearized period of (3) but may be
somewhat different [according to the form of p(t) and <ji{t)] and still produce a stable
solution.

It should be emphasized here that this is intended to provide a quantitative study
of the special equation (3) dealt with, and even that only in the restricted region of e
small. Qualitative investigations begin with Liapounoff [6] and have been taken up by
other authors.

In order to use Friedrich's approach directly, let cp = ut and consider a phase shift
8 in (p such that the equation (3) now written in the form

u" + u — —e[p(0 + S)u' + g,(0 + 5)w]

has the special initial conditions

w(0) = A, u'( 0) = 0.

Following Friedrichs we introduce the variable t) such that the period of the resultant
motion, T, equals 2t + e?j(e). Friedrichs then seeks values of A, 5, and »/, taken to be
analytic in e, such that periodicity conditions on the solutions near 6 = 0 are satisfied.
The method is given fully in the textbook of Stoker [3, p. 233] and need not be repeated
here. In the case of a linear equation, A is independent of iot and is not involved in the
periodicity considerations. The condition for periodicity of solutions finally obtained is:

- (a2 — d2)~ + ^ (c2 + &2)2 — flojr/0 = —7rSc0 =F

*Numbers in brackets refer to references given at the end of the paper.
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Here ij0 is the first term in an expansion of 17(e) in powers of e, and the c0 , a0 , a2 ,
b2 , c2 , <1-2 are the coefficients in the Fourier series expansion of p and qx , namely

p{t) = a0 + (a„ sin nut + bn cos nut),
n= 1

q'i(t) = c0 + (c„sinno)< + dn cos nut).
71=1

Translating back into terms of co, we have

jco T ^ («2 — d2)2 + - (c2 + b2)2 — aoj
_ J _ = 1 e

2tt 2

Thus periodic solutions will exist when the period of the coefficients is given by

T = - = SM 1 + s =F I 7^ (.0-2 ~ d2)2 + - (c2 + b2)~ — OoJ

Let us now investigate (3) by the customary formal expansion in a power series in e.
With the change of variable r = ut, we have

u"{t) + - p(t)u'(t) + 4 (tfiO) + -)m(t) = 0. (6)
CO CO \ 6/

It is well known [4] that the fundamental solution to the Floquet equation is given by

u = eXTg(r),

where X is a complex number and g(j) has period 2x. Let us take X, g, and u to be analytic-
functions of the small parameter e so that we may write the expansions

X = X0 + tXi + e2X2 + • • • ,

<7 = ffo + effi + e2g2 + ■ • • ,

U = 1 "j" €Ui -(- € C02 "I" ' ' * •

Substituting these into (6), equations of any desired degree in e are obtained. For
the degree zero:

g'o' + 2X0^0 + (Xo + 1) = 0.

Now if the condition that g be periodic is imposed, the gn must be periodic; in particular,.
<70 must have the linearized period, 2t. This will obtain if

X0 = dtzi , g0 = c + e 2X°T.

Here one of the integration constants has been taken to be unity with no loss in gene-
rality. Proceeding, the equation of first degree in e can now be found making use of the
zeroth order solutions, X0 and g0 ■ The result is

g[' + 2Xog[ = -(c + e-^OPMo - 2u, + Ql + X„p] + 2X0e^°2l[2Xl + p]. (7)

Since the solution gx is to be periodic, the terms on the right hand side of (7) which
will produce solutions that are non-periodic must be eliminated. This represents the
imposition of the periodicity condition as a boundary condition. The method, often
termed the casting out of secular terms, was given by Poincare and used extensively by
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Duffing and many others. The terms on the right hand side of (7) which give rise to
secular solutions are the constant terms and the terms with e~2X°T as multiplier. Again
we use an expansion of the periodic functions:

p(r) = a0 + 53 an sin nr -f- bn cos nr,
n= 1

Qi(t) = Co + X c„ sin nr + dn cos nr.
n = 1

Collecting constants and coefficients of e~2Ur, we have

—c[2XiX0 — 2co] + c0 + X0<io] — ^ ^ — 0,

C2 1 d?   XpCt2 b2\0   „"2i +2 2i 2

(8)

[ 2XoXj Xo&o "I- Co] C

Eliminating c we obtain
r 1 1 ~11/2

2Xj = -Oo =fc I j (c2 + b2)2 + -g (a2 — d2)2 — (c0 — 2coi)2J

To check the previous result, we set Xi = 0 and obtain

ui = 2 ^ 2 4 4 ~~ —

Since co = 1 + ewj in this approximation and co = 1 -ti)a/2-K has been used, then w, =
— ̂ 0/2tt. The result is

Vo
I Tl 1 T/2\

= — 7r^c0 ± - (c2 + b2)2 + ^ (a2 — d2)2 — a20 J.

Returning to (8), it is observed:
1) if

(Co - 2cox)2 > \ [(c2 + &2)2 + (a2 - d2)2],

stability is determined entirely by a0

a) a0 < 0, X, > 0, and the resulting u(t) increases with time

b) a0 > 0, Xi < 0, and u(t) decreases with time.

2) if

(c0 — 2coi)2 < - {(c2 + b2)2 + (a2 — d2)2},

stability is determined by

- f + | [| Ife + W2 + (a2 - rf2)2} - (c0 - 2CO,)2]1'2.

Let us consider as an example to explicate the above work the equation (2) where
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y0 will be taken to be A sin t. (This is exactly the problem solved by McLachlan in [1],
p. 190). Then

P(t)

q^t) = A2 sin 21,

- i! ia0 - 2 1.

A2
Q>2 = Cq — d2 ~ 0, C2 = A b2 = 2

Notice that for periodicity we would need

-UA* A* + A* iY/2-n
Wl ~ 2 lie ~ T + A ~ V ~ °'

since here co = 1. If A2 = 4, then this condition is satisfied. Further, using (8) since
c0 — 2o>! = 0 and |{(c2 + b2)2 + (a2 — d2)2} > 0

X = + 1-8 + 2'
Thus < 0 for A2 > 4 and >0 for A2 < 4.

This example as was remarked is given by McLachlan [1] and was presented merely
to show the ease in which stability characteristics may be obtained once \x is computed
in terms of a0 , a2 , b2 , c2 , and d2 .

References

1. N. McLachlan, Ordinary non-linear differential equations, Oxford, 1950.
2. H. G. Cohen, Subharmonic synchronization of the forced Van der Pol equation (To appear in the Pro-

ceedings of the Colloquium on non-linear vibrations, lie de Porquerolles, August, 1951.
3. J. J. Stoker, Non-linear vibrations, Interscience, New York, 1950. (see especially Appendix I).
4. E. L. Ince, Ordinary differential equations, Dover, New York.
5. M. J. O. Strutt, Lamische, Mathieusche und verwandte Funktionen in Physik und Technik, Julius

Springer, Berlin, 1932.
6. A. Liapounoff, Probleme general de la stability du nwuvernent, Princeton University Press, Princeton,

1949.

ON THE RELATIONSHIP BETWEEN THE MARTIENSSON AND DUFFING
METHODS FOR NONLINEAR VIBRATIONS*

By ROBERT E. ROBERSON (Mechanics Division, Naval Research Laboratory)

The background for a number of one-term approximation methods and their appli-
cation to forced nonlinear vibrations has recently been discussed by Schwesinger.1

*Received Aug. 15, 1951. This paper corresponds to part of a dissertation submitted to Washington
University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

1G. Schwesinger, On one-term, approximations of forced nonharmonic vibrations, J. Appl. Mech. 17,
202-208 (1950). Note that he attributes to Riidenberg the method that is designated here as Martiensson's
method.


