On the rate of convergence of relaxation methods
Author:
R. Plunkett
Journal:
Quart. Appl. Math. 10 (1952), 263-266
MSC:
Primary 65.0X
DOI:
https://doi.org/10.1090/qam/55048
MathSciNet review:
55048
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Stanley P. Frankel, Convergence rates of iterative treatments of partial differential equations, Math. Tables Aids Comput. 4 (1950), 65–75. MR 46149, DOI https://doi.org/10.1090/S0025-5718-1950-0046149-3 R. V. Southwell, Relaxation methods in physical sciences, Oxford Press, 1948.
- J. L. Synge, A geometrical interpretation of the relaxation method, Quart. Appl. Math. 2 (1944), 87–89. MR 10658, DOI https://doi.org/10.1090/S0033-569X-1944-10658-1
- H. D. Huskey, Characteristics of the Institute for Numerical Analysis computer, Math. Tables Aids Comput. 4 (1950), 103–108. MR 37592, DOI https://doi.org/10.1090/S0025-5718-1950-0037592-7
Retrieve articles in Quarterly of Applied Mathematics with MSC: 65.0X
Retrieve articles in all journals with MSC: 65.0X
Additional Information
Article copyright:
© Copyright 1952
American Mathematical Society