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WAVE PROPAGATION*
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Abstract. In the analysis of boundary value problems in the theory of plasticity,

the general situation arises that different partial differential equations are to be satisfied

depending on whether the material is in the plastic or elastic state. The criterion de-

termining the state at any material point depends on the dependent variables and their

derivatives with respect to time. Thus the regions of application of the different differ-

ential equations must be determined from the boundary and initial conditions as the

solution is developed.

The theory of the propagation of plastic waves in one dimension is a case in which

the solution, including the determination of the unknown plastic-elastic boundaries,

can be treated. An example is presented in this paper which illustrates the many types

of boundary determination conditions which must be used. The method is based on

the numerical integration along the characteristics of the hyperbolic equations arising,

one linear and one quasi-linear. The development is possible since forward integration

along characteristics enables the unknown boundaries to be determined independently

of the subsequent solution. This situation is contrasted with other problems in the

theory of plasticity. The complexity of the procedure indicates the difficulty to be

anticipated with analytical treatment of such problems, and with the numerical treat-

ment of problems involving more extensive plastic flow.

1. Introduction. The general mathematical theory of the propagation of plastic

waves along rods was developed by Karman, Bohnenblust and Hyers [I].** The solution

of boundary value problems in this field requires the treatment of a quasi-linear wave

equation in the regions where plastic flow is taking place, but the form of the equation

changes if the stress falls at any section which has previously undergone plastic flow.

Such a region is termed an unloaded or hysterises region, and its existence and develop-

ment depends on the solution of the boundary value problem prior to the instant con-

sidered. This situation which requires the determination of the unknown boundaries

between plastic and unloaded regions leads to a wide variety of boundary determination

conditions. It is in this respect that the analysis differs from that of non-linear elastic

waves in which the same differential equation would arise for both loading and un-

loading, so that the unknown boundary problem would not appear. The solution de-

tailed below is presented since, in view of the wide variety of boundary determination

conditions needed, it illustrates in a general way the types of problems to be faced in

this field, emphasising the difficulty to be anticipated in the analytical attack on such

problems.

The method of solution is based on the theory of characteristics of the hyperbolic

equations arising, and is treated numerically. It was found that in order to maintain

sufficient accuracy to determine the unknown boundaries between plastic and unloaded
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**Numbers in square brackets refer to the bibliography at the end of the paper.
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regions it was necessary to compute the geometry of the slip line field using six sig-

nificant figures. Graphical methods were found to be not sufficiently precise to de-

termine consistent boundaries. Thus this is an example of the situation which may

arise in the numerical treatment of boundary value problems, where more accuracy is

needed to carry through the method than is warranted by the initial physical data: in

this case the stress-strain relation of the material under consideration. It presumably

means that in an experimental check minor variations in the material would involve

appreciable changes in these boundaries. However in this case only minor changes in

the final strain distribution would be expected to result.

Because of the accuracy required to complete the solution, it would be very lengthy

to treat a problem involving more extensive plastic flow. Moreover, because of the

variety of boundary conditions encountered, such problems do not lend themselves to

routine computing.

2. Basic Theory. The equations governing the propagation of plastic waves were

developed by Taylor [2] and Karman [3] independently. Karman's theory has recently

been published with some experimental results (Karman and Duwez [4]). The theory

was later further developed principally by Bohnenblust in several O.S.R.D. reports.

Here we shall consider the final form of the theory which applies for finite strain.

We are concerned with a material having an invariant relation between stress and

strain under continued loading, independent of the speed of the test. Such a relation

is shown by OABD in Fig. 1. In the elastic region OA the relation is linear with gradient

FIG. I

of magnitude Young's Modulus E. The arc ABD represents plastic flow. The stress <r

is defined as the nominal stress, force per unit initial cross-sectional area, and t the

nominal strain, change in length per unit initial length. These nominal values are used,

since in combination with the Lagrange type space coordinate x, large deformations can

be analysed without introducing additional complexities into the equations. For con-

venience with the particular problem to be considered compressive stress and strain will

be taken as positive. If when the point B has been reached unloading takes place, elastic

strain increments only occur, and the stress-strain point moves on the straight line BC

in Fig. 1 which is parallel to the original elastic line OA. If the stress later exceeds the

value at B, the stress-strain point continues along the plastic flow curve BD.
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Longitudinal motion in the x direction only is considered, and this puts a limitation

on applications if the associated lateral motion becomes important. The equation of

motion is

da d2u

dx= ~p~d?' (1)

where p is the initial density, and u the particle displacement from its initial position

x in the unstrained rod. If straining is taking place on the curve OABD, a = <x„(e),

e = —du/dx; da/dx can be replaced by — a'v{e)d2u/dx2, and the quasi-linear wave

equation is obtained:

d2u 2 d2u 2 1 d<rv ,,. ,/ du\ ,ON

a? = c d?> c = p = /(e) = (2)

The characteristics of this equation (see [1]) are given by dx/dt = Tc, and along

them we have the integral relation

dx
— = =Fc, v =F <p — constant, (3)

where v is written for the particle velocity du/dt, and <pU) = JJc de.

When the material has been unloaded, the corresponding equations have been given

by Bohnenblust [5]. If B in Fig. 1 is given-by (emaj[ , o-max), the unloading line BC is

<r = — E(e m„ — e). (4)

The equation of motion becomes

iAt
dt2

_ 2 ^ U ( \   2

0 dx2 dx Lp °em"J' (5)

where cl = E/p. The characteristics, and characteristic relations are

dx
= =Fc0 , pc0v =F <r = constant. (6)

At any specified time, the second term on the right hand side of (5) is a function of

x which is not prescribed initially, but which is determined from the solution at earlier

times.

We have summarised the two types of equations to be considered. They can be

applied directly to continuous stress fields as long as the stress strain relation OABD is

concave downward. When this is not the case it has been shown by White and Griffis

[6] and Lee [7] that shock waves are predicted, but we shall not be concerned with this

situation in the present paper. However, in the elastic and unloading regions waves of

stress and strain discontinuity can be propagated along the characteristics, and the

Hugoniot relations of continuity and momentum change take on forms very similar to

the characteristic relations. We shall be concerned with such finite linear waves.

We shall consider the solution in terms of the characteristic net in the (x, t) plane

and for convenience we replace the time coordinate by r = c0t/l, and x by J = x/l,

where I is a typical linear dimension. The linear characteristics are then given by

d£/dr = =Fl. The characteristic relations in the unloaded region U are then

~ = =Fl, pc0v =F a = const. (6a)
(XT
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and in the plastic region P

~ = =Fc', pc0v =F pc„tp = const., (3a)
ar

where c' = c/c0 ■

3. The impact problem considered. The problem we shall consider in detail, which

involves an illustration of the many types of free boundary determination conditions

which can arise in the analysis of plastic wave boundary value problems, is the motion

resulting from the normal impact of a cylinder of length I, moving parallel to its axis

with velocity v0, against a rigid target at rest. For the convenience of having zero initial

conditions we add a constant velocity v0 to the whole system. The initial and boundary

conditions are then

t» = 0, <t = 0, r = 0, 0<£ <|1,

V = V0 , £ = 0, r > 0, (7)

a = 0, £ = 1, t > 0.

The initial development of the corresponding characteristics field is shown in Fig. 2.

The discontinuity in velocity at 0 combined with the zero initial conditions determines

a simple wave or lost solution with a fan of straight characteristics through 0 as dis-

UNLOADING

REFLECTED WAVE

"ELASTIC

WAVE FRONT

1
FIG. 2
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cussed by Karman and Duwez [4], Along each straight characteristic the velocity and

stress remain constant. OA is the elastic wave front across which the stress rises in-

stantaneously from zero to the yield stress Y, corresponding to A in Fig. 1. OD is the

characteristic corresponding to the velocity v0 . Throughout the triangle ODE the ma-

terial is moving with the constant velocity v0 and is subjected to constant stress.

At the free end, £ = 1, the elastic loading wave is reflected at A as an unloading

wave of stress discontinuity ABC, which is propagated with the elastic wave speed c0

in view of the unloading relation, and so has gradient — 1 in Fig. 2. At A the reflected

wave is equal in magnitude and opposite in sign to the original elastic wave front and

produces zero stress there, but as it advances into the plastic region its magnitude is

reduced as discussed below. Let the suffixes b and a denote conditions before and after

the unloading wave ABC has traversed an element of the cylinder. Below AC the

material is in the plastic condition P, while above AC unloading has taken place and

the material is in the condition U. At any point along AC <rb , th and vb are known from

the simple wave solution. The momentum relation for the unloading shock wave corre-

sponding to the characteristic relation (6) is

— <rb — —pc0(va — vb). (8)

At A pc0vb = <rb = Y for the elastic part of the initial wave solution. Since <ra = 0 at A,

(8) determines pc0va = 2Y there. Considering the characteristic adjacent to AC, the

constant in (6a) is given in terms of the known conditions at A, and we have

pCaVa — <ra = 2Y. (9)

Eliminating va between (8) and (9) gives

2 Y [pc0Vb ffj]
<Ta — <Jb     . (10)

Application of (3) for the initial wave solution emanating from 0 gives

pc0vb = pc0 f C de = f — da. (11)
J o J o C

since da/de = pc2. But c = c0 in the elastic region OA in Fig. 1, and c < c0 when plastic

flow occurs, and so it follows from (11) that the quantity [pc0vb — ab] in (10) is zero at

A in Fig. 2 and increases from A towards C. Thus (10) shows that the unloading shock

wave is progressively absorbed as it penetrates the initial plastic wave front. If the im-

pact velocity is below a certain critical value determined by (10), the unloading wave

of stress discontinuity will continue through to the impact fact at E, but for higher

impact velocities the unloading wave will be absorbed by the original plastic wave

front. Thus, the stress discontinuity across the unloading wave may be reduced to zero

at the point C, say.

Thus two types of problems arise in analysing the subsequent motion. The plastic

region may spread from C above AE, or the material may be unloaded throughout its

length above AC. In the latter case it does not follow that plastic flow does not occur

again. If at any section the solution of the equations for unloaded motion determines a

stress equal to the previous maximum stress to which the section has been subjected,

plastic flow can occur again there, and a new region in which the plastic wave equations

must be solved is initiated. Such a problem is illustrated in this paper, and the dis-



340 E. H. LEE (Vol X, No. 4

15
«n
i
O

X

^10
cL

<0
(/)

a. 5
l-
tn

YIELD POINT

0 .02 .06 10
STRAIN

FIG. 3

cussion of the determination of the boundaries of such a region is given in the next

section.

To illustrate the results in detail, the solution is presented for impact of a cylinder

of aluminum having the stress-strain curve shown in Fig. 3. The corresponding <p, <r

relationship [see Eq. (3)] is shown in Fig. 4. For this material the unloading wave of

stress discontinuity is propagated through to the impact fact for impact velocities

v0 < 363 ins/sec. For values greater than this the unloading wave is absorbed and the

12 3 0
PARTICLE VELOCITY 0 INS/SEC.X I0"3

FIG. 4
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plastic region spreads out above it. The case considered in this paper, the characteristic

field for which is illustrated in Fig. 5, corresponds to an impact velocity of 356 ins/sec

so that the unloading wave just gets through without being absorbed, but for which

plastic flow occurs again subsequently. The unloading wave is reduced from the yield

point stress magnitude, 5 X 103 p.s.i., at A in Fig. 5 to 0.131 X 103 p.s.i. along BC

where it remains constant.

4. Determination of the plastic-unloading boundary. For a material with a stress-
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strain curve which is concave to the strain axis as considered here, shock waves of stress

discontinuity are not initiated within the field of solution but must emanate from dis-

continuities in the boundary or initial conditions. Thus, if the unloading shock wave

ABC in Fig. 2 has been absorbed at C, the subsequent solution of the impact problem

specified in (7) does not involve waves of stress discontinuity. However, discontinuities

in stress and velocity derivatives may occur, and in fact are in particular associated with

the continuation of the plastic-unloading boundary from C. Such discontinuities must

therefore be considered in investigating the conditions which determine the boundary.

A similar situation arises when a new plastic region is formed if the unloading wave

ACE in Fig. 2 traverses the entire cylinder. The conditions determining the plastic

unloading boundary have been developed by Karman, Bohnenblust and Hyers [1], but

since this report may not be readily accessible, a brief statement of the theory is given

in the Appendix with a somewhat simplified derivation.

In the previous section we considered the characteristic field shown in Fig. 5 up

to the unloading shock wave AC. The solution beyond this can formally be continued

by assuming the maintenance of the unloaded condition and making use of the char-

acteristic relations (6). Before this extension can be considered satisfactory, it is neces-

sary to check that the stress at any section does not exceed the previous maximum value

reached just ahead of the unloading shock wave AC. This is, in fact, found to occur

at D. The characteristic OB determines the wave front of maximum stress, behind

which in OBC the stress is constant and equal to the maximum impact stress. In the

unloaded region the influence of the wave front and the discontinuity of stress gradient

across OB is transmitted along the characteristic BD, leading to the initiation of the

new plastic region at I). A similar condition for which according to the unloaded solution

the stress reaches the new yield stress at each section determines the plastic-unloading

boundary DE. This is a boundary of type (i) as defined in the Appendix, and since

dx/dt > c0 (tf£/dr > 1) no other conditions are required, and the two intersecting char-

acteristics in U and the known value of = ah on AC determine its position. If these

conditions are formally extended beyond E, it is found that dx/dt < c0 , and a new

condition discussed in the Appendix must be used. It is, of course, evident that the old

condition cannot be applied in this region since the characteristic d£/dr = +1 intersects

the plastic region and so can no longer be used to determined the boundary. However,

the formal continuation of the boundary DE beyond E is useful to obtain the termination

point E accurately. Since the boundary at E is tangent to a characteristic d£/dr = +1,

d/ds(pc0v + <j) is zero there, where s is the arc length along the boundary, so that the

position of E can be determined from a plot of (pc0v + a) extending on both sides of E.

From the known conditions along the boundary DE the solution in the plastic region

is obtained by the method of characteristics for a Cauchy problem using finite differences

and the characteristic relations (3).

A power series expansion of the variables about E indicates that there is a discon-

tinuity in the gradient of the boundary there. In fact dx/dt becomes less than c, and the

boundary EF is determined by a characteristic in each of P and U, and the known

value of the yield stress at each section crmaI . The determination of EF permits the

plastic field to be extended. At F the boundary becomes vertical, so that a continuation

would involve a type (ii) boundary as discussed in the Appendix and modified conditions

must be satisfied. It is found that dx/dt becomes <c, and the condition dx/dt =

— 1/p (do/dv) must be used with a characteristic in each of P and U to determine FG.
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The upper part of the boundary DK of the plastic region P emanating from D is

determined by two characteristics in P and one in U. dx/dt > c, so that with this type

(ii) boundary no further conditions are to be satisfied. At K this boundary intersects

the remnant of the unloading wave reflected from the impact surface at C. The P-U

boundary then takes the form of an unloading wave of stress discontinuity with dx/dt =

c0 along KJ. The known solution in P, combined with the momentum relation and the

characteristic value on the U characteristic KJ determines the magnitude of the dis-

continuity across the unloading shock, and this is found to be completely absorbed at

J. Thereafter, along JG, dx/dt < c0 , and two characteristics in P and one in U deter-

mine the segment of the boundary which closes the plastic region.

A check of the characteristic constants determined by the solution integrated to the

point G, shows that the new yield stress at each section is not exceeded in the subsequent

motion, so that the U region covers the entire cylinder for all later terms. The cylinder

will rebound in elastic vibration, with a permanent plastic strain distribution generated

by the two plastic regions P.

5. Discussion of the solution. The permanent plastic strain distribution corresponding

to the characteristic field of Fig. 5 is shown in Fig. 6. It is obtained from the maximum

.2 .4 .6 .8 1.0^
LAGRANGIAN COORDINATE ALONG

THE CYLINDER

FIG. 6. THE PERMANENT STRAIN
DISTRIBUTION
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strain reached at each section when plastic flow finally ceases there, by subtracting the

elastic component of strain ABCGEF is the plastic strain produced by the

impact wave spreading from 0 in Fig. 5 before it is absorbed by the unloading elastic

wave reflected from the free end. The subsequent flow due to the second plastic region

produces the additional permanent strain CGED. This is seen to be small compared

with that due to the primary plastic wave. The major part of the strain is seen to be

concentrated at the impact end, which for higher velocities and large strains leads to

the mushrooming effect of impact.

A study of this solution indicates the extensive detailed analysis required to de-

termine the boundaries of the secondary plastic region even though it is quite limited

in extent. It indicates the lengthy calculation to be expected for a case of higher velocity

impact where detailed boundary considerations will be necessary for a much more

extensive plastic region. The changing type of boundary, with the different conditions

discussed in the Appendix, prevent a routine computational program and so increases

the computing time. High numerical accuracy must be maintained in order to determine

consistent boundary points, particularly on the segments where the condition dx/dt =

— 1/p (dff/dv) is used, since it involves, in its finite difference approximation, operating

with the small difference between almost equal numbers. In the present case it was

found necessary to work with six significant figures, and to compute all characteristic

intersections in the x-t plane, rather than making use of a graphical plot.

This problem illustrates the essential difficulty which arises in boundary value

problems of the theory of plasticity. The different relations governing elastic deformation

and plastic flow lead to different differential equations for material in these two states,

and the domains through which each of the two states pertain must be determined from

the prescribed boundary values on the outer boundary. This poses a much more difficult

problem than the usual boundaiy value problem for a prescribed differential equation.

The present problem of plastic waves in one dimension is a case that can be handled for

general boundary conditions by the methods discussed above. The solution is made

possible by the hyperbolic nature of the wave equations governing each type of be-

haviour, which permits forward integration along real characteristics, and the de-

termination of the domains in which each equation applies at each stage as the solution

proceeds with increasing time t. In other problems in the theory of plasticity such a

direct procedure is not possible. For example, in plastic-rigid theory of quasi-static flow

in plane strain, which has received considerable attention in recent years, different

conditions are to be satisfied in the plastic and rigid regions. In the plastic region two

hyperbolic pairs of first order partial differential equations arise which have the same

pairs of characteristics, the slip lines. In general the prescribed boundary conditions are

such that insufficient boundary information is available for forward integration of both

pairs of equations, so that the solution at some point near the boundary may depend

on the plastic-rigid boundaries to be determined within the domain. Thus, in general

only very special problems can be treated, in which for example static determinacy

permits separate integration of the stress pair of equations from the prescribed boundary

conditions. From the point of view of considering the general types of boundary value

problems in the theory of plasticity, it is useful to have one group of problems, waves

in one dimension, for which general boundary value problems can be treated directly

as illustrated in the present paper.

Acknowledgement. The solution discussed above was taken from an official report
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Appendix. Determination of the P-U boundary.

As discussed in Section 4, we are concerned with a boundary across which derivatives

of stress and velocity are discontinuous. For brevity we will use subscripts x and t to

denote partial differentiation with respect to these variables, and superscripts p and u

to denote values in the plastic and unloading regions.

Continuity implies that the differentials must be the same on the two sides of the

boundary, therefore

da — ffl dx + <rVt dt — aut dx + cr" dt,

(a.l)

dv = vvx dx + vvt dt = vux dx -\- v" dt.

Making use of the equations of motion and continuity ax = — pv,,c, = —pc"vx ,

all derivatives but <r, can be eliminated from (a.l) giving:

p 1
o-(

a' 1 - -
^ 2

_ 1 (d*)2

cl\dt) .
- a (a.2)

1 (dx

c \dt

in which a", > 0 in order to maintain plastic flow. Two cases arise: (i) an element on

the boundary is changing from U to P, (ii) from P to U. They are considered below

side by side.

(i) U^P, (ii) P-+U,

<j"t >0. au, < 0.

From (a.2) a > 0, From (a.2) a < 0,

dx

dt
> c0 or < c, c <

dx

dt
< c0 ,

otherwise <rp, = <r" = 0. otherwise <jv, = a", = 0.

When av, = a" = 0, it follows from (a.l) that either ax = 0 or

1 da_ _ dx

p dv dt'

These conditions serve to determine the boundary as the solution is evaluated by

characteristic integration.
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