QUARTERLY
OF
APPLIED MATHEMATICS

This periodical is published quarterly by Brown University, Providence 12, R. I. For its support, an operational fund is being set up to which industrial organizations may contribute. To date, contributions of the following industrial companies are gratefully acknowledged:

Bell Telephone Laboratories, Inc.; New York, N. Y.,
The Bristol Company; Waterbury, Conn.,
Curtiss Wright Corporation; Airplane Division; Buffalo, N. Y.,
Eastman Kodak Company; Rochester, N. Y.,
General Electric Company; Schenectady, N. Y.,
Gulf Research and Development Company; Pittsburgh, Pa.,
Leeds & Northrup Company; Philadelphia, Pa.,
Pratt & Whitney, Division Niles-Bement-Pond Company; West Hartford, Conn.,
Republic Aviation Corporation; Farmingdale, Long Island, N. Y.,
United Aircraft Corporation; East Hartford, Conn.,
Westinghouse Electric and Manufacturing Company; Pittsburgh, Pa.

The Quarterly prints original papers in applied mathematics which have an intimate connection with application in industry or practical science. It is expected that each paper will be of a high scientific standard; that the presentation will be of such character that the paper can be easily read by those to whom it would be of interest; and that the mathematical argument, judged by the standard of the field of application, will be of an advanced character.

Manuscripts submitted for publication in the Quarterly of Applied Mathematics should be sent to Professor W. Prager, or Professor G. F. Carrier, Quarterly of Applied Mathematics, Brown University, Providence 12, R. I., either directly or through any one of the Editors or Collaborators. In accordance with their general policy, the Editors welcome particularly contributions which will be of interest both to mathematicians and to engineers. Authors will receive galley proofs only. The authors' institutions will be requested to pay a publication charge of $5.00 per page which, if honored, entitles them to 100 free reprints. Instructions will be sent with galley proofs.

The subscription price for the Quarterly is $6.00 per volume (April-January), single copies $2.00. Subscriptions and orders for single copies may be addressed to: Quarterly of Applied Mathematics, Brown University, Providence 12, R. I., or to Box 2-W, Richmond, Va.
QUARTERLY
OF
APPLIED MATHEMATICS

EDITED BY
H. W. BODE
TH. v. KÁRMÁN
I. S. SOKOLNIKOFF
G. F. CARRIER
J. M. LESSELS
H. L. DRYDEN
W. PRAGER
J. L. SYNGE

WITH THE COLLABORATION OF
M. A. BIOT
J. P. DEN HARTOG
C. FERRARI
J. N. GOODIER
F. D. MURNAGHAN
S. A. SCHELKUNOFF
H. U. SVERDRUP
H. S. TSIEN
L. N. BRILLOUIN
H. W. EMMONS
K. O. FRIEDRICH
G. E. HAY
J. PERES
W. R. SEARS
SIR GEOFFREY TAYLOR
J. M. BURGERS
W. FELLER
J. A. GOFF
P. LE CORBEILLER
E. REISSNER
SIR RICHARD SOUTHWELL
S. P. TIMOSHENKO
F. H. VAN DEN DUNGEN

Volume X
1952
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garrett Birkhoff</td>
<td>Induced mass with free boundaries</td>
<td>81</td>
</tr>
<tr>
<td>A. E. Bryson</td>
<td>Note on aerodynamic heating with a variable surface temperature</td>
<td>273</td>
</tr>
<tr>
<td>Hans Bückner</td>
<td>A formula for an integral occurring in the theory of linear servomechanisms and control-systems</td>
<td>205</td>
</tr>
<tr>
<td>R. A. Clark and E. Reissner</td>
<td>A problem of finite bending of toroidal shells</td>
<td>321</td>
</tr>
<tr>
<td>Hirsh Cohen</td>
<td>The stability equation with periodic coefficients</td>
<td>266</td>
</tr>
<tr>
<td>Philip Cooperman</td>
<td>An extension of the method of Trefftz for finding local bounds on the solutions of boundary value problems, and on their derivatives</td>
<td>359</td>
</tr>
<tr>
<td>S. Corrsin</td>
<td>Generalization of a problem of Rayleigh</td>
<td>186</td>
</tr>
<tr>
<td>J. W. Craggs</td>
<td>The compressible flow corresponding to a line doublet</td>
<td>88</td>
</tr>
<tr>
<td>T. V. Davies</td>
<td>Gravity waves of finite amplitude. III. Steady, symmetrical, periodic waves in a channel of finite depth</td>
<td>57</td>
</tr>
<tr>
<td>S. H. Dike</td>
<td>Difficulties with present solutions of the Hallén integral equation</td>
<td>225</td>
</tr>
<tr>
<td>D. C. Drucker and W. Prager</td>
<td>Soil mechanics and plastic analysis or limit design</td>
<td>157</td>
</tr>
<tr>
<td>G. F. D. Duff and N. Levinson</td>
<td>On the non-uniqueness of periodic solutions for an asymmetric Lienard equation</td>
<td>86</td>
</tr>
<tr>
<td>A. Fialkow and I. Gerst</td>
<td>The transfer function of general two terminal-pair RC networks</td>
<td>113</td>
</tr>
<tr>
<td>J. Foulkes</td>
<td>Minimum weight design and the theory of plastic collapse</td>
<td>347</td>
</tr>
<tr>
<td>L. Galowin (see M. Morduchow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Gerst (see A. Fialkow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. R. Goodman</td>
<td>The quarter-infinite wing oscillating at supersonic speeds</td>
<td>189</td>
</tr>
<tr>
<td>B. Gross</td>
<td>On the inversion of the Volterra integral equation</td>
<td>74</td>
</tr>
<tr>
<td>G. Guderley</td>
<td>A formula for the normalization constant in eigen value problems</td>
<td>176</td>
</tr>
<tr>
<td>P. Hartman and A. Wintner</td>
<td>An inequality for the amplitudes and areas in vibration diagrams of time-dependent frequency</td>
<td>175</td>
</tr>
<tr>
<td>Tosio Kato</td>
<td>On the least eigenvalue of the Hill equation</td>
<td>292</td>
</tr>
<tr>
<td>Julian Keilson and James E. Storer</td>
<td>On Brownian motion, Boltzmann’s equation, and the Fokker-Planck equation</td>
<td>243</td>
</tr>
<tr>
<td>Leslie S. G. Kovasznay (see Mahinder S. Uberoi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. H. Lee</td>
<td>On a “paradox” in beam vibration theory</td>
<td>290</td>
</tr>
<tr>
<td>E. H. Lee</td>
<td>A boundary value problem in the theory of plastic wave propagation</td>
<td>335</td>
</tr>
<tr>
<td>T. D. Lee</td>
<td>On some statistical properties of hydrodynamical and magneto-hydrodynamical fields</td>
<td>69</td>
</tr>
<tr>
<td>M. Lessen</td>
<td>Note on a sufficient condition for the stability of general plane parallel flows</td>
<td>184</td>
</tr>
<tr>
<td>N. Levinson (see G. F. D. Duff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. C. Lin</td>
<td>On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equation</td>
<td>295</td>
</tr>
<tr>
<td>C. B. Ling</td>
<td>Torsion of a circular cylinder having a spherical cavity</td>
<td>149</td>
</tr>
</tbody>
</table>
P. O. Löwdin: On the numerical integration of ordinary differential equations of the first order .. 97
G. S. S. Ludford: The boundary layer nature of shock transition in a real fluid . 1
William M. MacDonald, III, John M. Richardson and Leon P. Rosenberry: Representation of nonlinear field functions by Thiele semi-invariants 284
A. R. Manwell: A note on the hodograph transformation ... 177
David Middleton: On the distribution of energy in noise- and signal-modulated waves. II. Simultaneous amplitude and angle modulation 35
John W. Miles: A note on the damping in roll of a cruciform winged body . . . 276
M. Morduchow and L. Galowin: On double-pulse stability criteria with damping 17
G. K. Morikawa: A non-planar boundary problem for the wave equation . . . 129
Ivan Niven: On the error term in interpolation formulas .. 397
S. I. Pai: Axially symmetrical jet mixing of a compressible fluid 141
L. E. Payne: On axially symmetric flow and the method of generalized electrostatics 197
L. E. Payne: A note on my paper “On axially symmetric flow and the method of generalized electrostatics” .. 398
R. Plunkett: On the rate of convergence of relaxation methods 263
W. Prager (see D. C. Drucker)
B. S. Ramakrishna (see V. R. Thiruvenkatachar)
E. Reissner: A problem of finite bending of circular ring plates 167
Eric Reissner: Pure bending and twisting of thin skewed plates 395
E. Reissner (see R. A. Clark)
John M. Richardson (see William M. MacDonald, III)
Robert E. Roberson: On the relationship between the Martinsson and Duffing methods for nonlinear vibrations ... 270
A. Robinson: Non-uniform supersonic flow ... 307
Leon P. Rosenberry (see William M. MacDonald, III)
J. J. Slade, Jr.: The elastic axes of a one-mass elastically supported system . . 278
M. R. Spiegel: The random vibrations of a string .. 25
James E. Storer (see Julian Keilson)
V. R. Thiruvenkatachar and B. S. Ramakrishna: A case of combined radial and axial heat flow in composite cylinders ... 255
Mahinder S. Uberoi and Leslie S. G. Kovasznay: On mapping and measurement of random fields .. 375
Alexander Weinstein: On cracks and dislocations in shafts under torsion 77
A. Wintner (see P. Hartman)
Y. Yamamoto: Variational principles of equilibrium of an elasto-plastic body . . 215
Yi-Yuan Yu: Heavy disk supported by concentrated forces 280
Book Reviews ... 93, 193, 398
The Wiley Applied Mathematics Series

I. S. Sokolnikoff, Editor

NUMERICAL SOLUTION of DIFFERENTIAL EQUATIONS

ANTENNAS: Theory and Practice

By Sergei A. Schelkunoff and Harald T. Friis, both at Bell Telephone Laboratories. Presents the ideas and theory necessary for a thorough understanding of antenna behavior, and illustrates the theory by applications to antennas in various frequency ranges. 1952. 639 pages. $10.00.

ADVANCED ANTENNA THEORY

By Sergei A. Schelkunoff. Contemporary antenna theory at an advanced level of research is presented in this valuable monograph. 1952. 216 pages. $6.50.

FINITE DEFORMATION of an ELASTIC SOLID

By Francis D. Murnaghan, Instituto Tecnológico de Aeronáutica, Brazil. A unified treatment of the influence of squares and higher powers of the strain components in the theory of elasticity. 1951. 140 pages. $4.00.

TENSOR ANALYSIS: Theory and Applications

By I. S. Sokolnikoff, University of California. First develops tensor theory without reference to specific applications; subsequent chapters demonstrate its practical application. 1951. 355 pages. $6.00.

THEORY of PERFECTLY PLASTIC SOLIDS

By William Prager, Brown University and Philip G. Hodge, Jr., University of California. "This volume is the definitive introduction to the mathematical theory of plasticity, an excellent exposition of the methods of investigation, and an account of what has been accomplished."—Journal of the Franklin Institute. 1952. 264 pages. $6.00.

INTRODUCTION to the THEORY of PROBABILITY and STATISTICS

By Niels Arley and K. Rander Buch, Denmark Institute of Technology. An elementary study indicating modern developments in the field. The Mathematical Gazette of London says: "It is a fascinating and cogent book and can be thoroughly recommended." 1950. 236 pages. $5.00.

MATHEMATICS of RELATIVITY

By G. Y. Rainich, University of Michigan. Presents the theory in as simple a form as is consistent with the clarity of fundamental concepts. "...an excellent introduction to the field, and ... a valuable addition to the literature..." American Journal of Science. 1950. 173 pages. $4.00.

INTRODUCTION to APPLIED MATHEMATICS

By Francis D. Murnaghan. A thorough discussion of vector and matric calculus, harmonic analysis, boundary value problems and integral equations, calculus of variations, and other important mathematical techniques. 1948. 389 pages. $5.50.

Send now for on-approval copies

CONTENTS

C. C. Lin: On Taylor's hypothesis and the acceleration terms in the Navier-Stokes equation ... 295

A. Robinson: Non-uniform supersonic flow ... 307

R. A. Clark and E. Reissner: A problem of finite bending of toroidal shells 321

E. H. Lee: A boundary value problem in the theory of plastic wave propagation .. 335

J. Foulkes: Minimum weight design and the theory of plastic collapse . 347

Philip Cooperman: An extension of the method of Trefftz for finding local bounds on the solutions of boundary value problems, and on their derivatives .. 359

Mahinder S. Uberoi and Leslie S. G. Kovasznay: On mapping and measurement of random fields .. 375

Notes:

Eric Reissner: Pure bending and twisting of thin skewed plates . . . 395

Ivan Niven: On the error term in interpolation formulas 397

L. E. Payne: A note on my paper "On axially symmetric flow and the method of generalized electrostatics" 398

Book Reviews ... 398

International Series in Pure and Applied Mathematics

PUBLISHED

Golomb and Shanks • Elements of Ordinary Differential Equations

Lass • Vector and Tensor Analysis

Leighton • An Introduction to the Theory of Differential Equations

Nehari • Conformal Mapping

Sneddon • Fourier Transforms

Stoll • Linear Algebra and Matrix Theory

Weinstock • Calculus of Variations

FORTHCOMING

Ahlfors • Complex Analysis

Rosser • Logic for Mathematicians

Rudin • Principles of Mathematical Analysis

Send for copies on approval

McGRAW—HILL BOOK COMPANY, Inc.

330 West 42nd Street New York 36, N. Y.
Scarborough, 2nd edition, pp. 99–103, the mistake arising from identification of two \(\xi \)-values in the interval which may be distinct.

Consider the given data \(f(j) = j \) for \(j = 0, 1, \ldots, n \), for which the polynomial approximation is \(p(x) = x \). Can the error be bounded by any function of \(x_0, \ldots, x_n \), \(y_0 = f(x_0), \ldots, y_n = f(x_n) \)? That it cannot is clear from the function \(f(x) = x + k \sin \pi x \). We have \(f(\frac{1}{2}) = \frac{1}{2} + k \), \(p(\frac{1}{2}) = \frac{1}{2} \), and \(f(\frac{1}{2}) - p(\frac{1}{2}) = k \). Since \(k \) is independent of \(x \) and \(f(x) \), this error value cannot be bounded by any function of these without strong hypotheses on the function \(f \).

A NOTE ON MY PAPER

ON AXIALLY SYMMETRIC FLOW AND THE METHOD OF GENERALIZED ELECTROSTATICS*

Quarterly of Applied Mathematics, 10, 197-213 (1952)

By L. E. PAYNE (University of Maryland)

It has been brought to the author's attention that the flow problem for a spindle was considered by E. W. Hobson ("On a class of spherical harmonics of complex degree with application to physical problems", Trans. Camb. Phil. Soc., 14, 211-236 (1889)). Hobson used a method which is entirely different from that employed by the author, but unfortunately his solution is in error. The solution to the problem is given in a corrected and simplified form in this paper. The only reference to Hobson's solution which the author has found is given in the appendix of A. B. Basset's "Treatise on hydrodynamics", vol. 2 (1888). Basset, however, did not discuss the problem and consequently did not recognize the errors in Hobson's solution.

*Received July 21, 1952.

BOOK REVIEWS

The book contains an unusually lucid exposition of the theory of finite elastic deformations, a field in which the basic physical ideas are often lost in the tangle of complex mathematical notations. The elegance of the present treatment is achieved by the consistent use of matrices. The first chapter serves as an introduction to vectors and matrices. The second chapter is concerned with the strain matrix, its behavior under transformations of the initial and final reference frames, its invariants, and the compatibility relations. The stress matrix and the general relations between stress and strain are discussed in Chapter 4, and for non-isotropic materials in Chapter 5. Chapters 6 and 7 are devoted to the application of the theory to specific problems such as simple shear, simple tension, or torsion of a circular cylinder.

Bringing clarity into a field where confusion is the rule, the volume will doubtless be welcomed by all students of mechanics of continua. In two respects, however, the book disappointed this reviewer. First, there is no reference whatsoever to the considerable volume of classical and recent work in this
field. While one can readily understand the author's refusal to work his way through the maze of confusing notations and often conflicting results of these papers, it cannot be denied that a critical digest of at least the more important of these papers would have greatly increased the value of the present book. Secondly, while the basic assumptions of the theory are clearly stated, the author rarely discusses their physical justification.

W. Prager

The book opens with 38 pages of definitions, identities, and generally useful information concerning the elliptic functions sn(u, m), cn(u, m), dn(u, m), z(u). The first three of these are tabulated to five places for values of u running from 0 to 3 in increments of .01, and for values of m from 0 to 1 in increments of .1. The function z(u) is tabulated to seven places for u ranging from 0 to 3 in increments of .01. The complete elliptic functions are also tabulated and cn(u, 1), dn(u, 1) are given for 3 ≤ u ≤ 4.

G. F. Carrier

The function \((2\pi)^{-1/2} \int_0^\infty \exp (-u^2/2) \, du \) and its first twenty-one derivatives are tabulated. The argument increments are .004 for the function and its first nine derivatives, and are .002 for the remaining derivatives. The argument range is from zero in all cases to 6.468, 8.236, 9.610, and 10.902. These ranges refer respectively to: the error function and its first five derivatives, the next five derivatives, the twelfth to sixteenth derivatives, and the rest of the twenty-one derivatives.

G. F. Carrier

This book is concerned with the solutions of the Mathieu equation, \(u_{xx} + (b - s \cos^2 x)u = 0 \), which have the period \(2\pi \). \(s \) is treated as a given parameter and \(b \) plays the role of the eigenvalue. The first thirty eigenvalues (15 corresponding to even solutions, 15 to odd) are tabulated for \(s \) ranging from 0 to 100. Since these functions have the representation \(u = \Sigma D_n \cos nx \) (or sin nx), the values of \(D_n \) are tabulated for various \(n, s, b, (s) \). Finally, the joining factors are tabulated over the appropriate range of \(s \). All this is prefaced by that general information which renders the tables easy to use.

G. F. Carrier

As proceedings of a conference, this book is almost necessarily a compilation of articles and papers of uneven quality and a superficially great diversity of topics. Nevertheless, in this reviewer's opinion it
portends a coming of age of economics mathematically, both in the sense of an applied mathematical economics, and in the sense of a discipline whose techniques may be employed profitably in some older "well-mathematized" areas. The crux of this is the brilliant theory of interacting productive aggregates of T. C. Koopmans (Chapter III) which furnishes a background for economic studies comparable in scope and utility to the linear steady state theory of electrical circuits in its realm.

Although the developments of this volume have profound implications for centralized planning, allocation, decentralization of authority, and orientation of research (profit-wise) in industry, they were largely stimulated by practical problems of military logistics. Thus the Army Air Forces group under M. K. Wood and G. B. Dantzig developed methods for (a) programming interdependent activities, e.g., the Berlin Airlift, (b) analysis of inter-industry commodity flows (generalizing and employing W. W. Leontief), (c) effective computation.

Mathematically, the central problem—the "linear programming" problem—is maximization of a linear functional (sometimes a vector) of non-negative variables subject to linear inequalities, e.g. the "transportation problem", to ship specified quantities of a product to n destinations from m origins under specified availability restrictions and travel costs so as to have least total shipment cost (resp. to find the "efficient" combinations of activities in production). Requisite theory of convex cones is developed ab ovo by Gerstenhaber, Gale and Arrow with interesting extensions by Gale, Kuhn and Tucker in the direction of equivalent maximal and minimal principles. There is close connection with 2-person game theory—every game can be written as a linear programming problem, and vice-versa usually, so that results and techniques in either bear on the other.

Computationwise (and for some theoretical questions) in linear programming, the finite step "simplex" method of Dantzig, which explicitly informs of arrival at a maximal solution, is one of the most effective tools yet developed—far outclassing, say, the Dines elimination technique. Heuristically employed up to the present, since Dantzig's proofs apply only to extremely special situations, recent results of the reviewer ("Mathematical Background of Linear Programming", Carnegie Tech-Air Forces Project in Intra-Firm Analysis, July 1951) provide for its applicability to every situation.

To supplement the misleadingly meager specific applications of linear programming detailed, current ones include: inversion of matrices, solution of simultaneous linear equations, optimal award of contracts to bidders, blending of aviation gasolines, and even plastic limit design of structures.

A. Charnes

The subject of irreversible processes has developed in relatively complete form within the last decade. This book shows how the ideas of entropy flow and entropy production together with the Onsager reciprocal relations lead to a theory of the thermodynamics of irreversible processes. The first two chapters of the book give an account of the theory, especially the Onsager relations; the following seven chapters include many examples from physics and chemistry and, among other topics, discussion of the application of the theory to heat conduction, electrical conduction (with and without a magnetic field), relaxation phenomena in continuous single component systems, discontinuous systems (with and without chemical reactions), ordinary diffusion, thermal diffusion, viscosity, diffusion potentials, thermoelectricity, reaction rates, electrochemistry, electrophoresis, and interference of a chemical reaction and a relaxation phenomenon. The last two chapters of the book are concerned with special topics such as the definition and discussion of stationary states of various order and further discussion of the foundations of the Onsager relations and the general theory.

The author has marked sections of the book so that it can be read in three cycles, the first for a general idea of the thermodynamics of irreversible processes, the second includes the examples but omits the statistical basis of the theory, and the third includes the entire monograph. It seems clear that the book will be tremendously useful to most physical chemists and to many physicists. The book assumes a background in thermodynamics and physical statistics although much of it can be read without the latter.

Rohn Truell

Dr. F. Ollendorff, other books by whom the reader has certainly used and enjoyed, is at present Professor at the Hebrew Technical College, Haifa (Israel). The present work is derived from a course of vector analysis, preparatory to modern physics, given to the students in their senior year. Its purpose is thus frankly utilitarian, but the book is penetrated through and through with the author's admiration for the beauty of its subject. This combination is so effective that the reader is often ashamed of voicing his objections to himself, as if he were interrupting a beautiful lecture.

The book contains eight chapters. Chapters 1, Vectors and Scalars, and 2, Vector Fields, contains the standard material and its application to geometry, mechanics, fluid mechanics and Maxwell electrodynamics, together with a few less common examples.

Chapters 3, Vector Analysis in Affine Space, 4, Tensor Algebra, and 5, Tensor Analysis in Affine Space, present the fundamental tools of tensor analysis applied to an affine space of z dimensions, with metric. (The possible absence of a metric is not discussed). There is an interesting treatment of pseudo-scalars and of axial vectors of both kinds, inspired by Brillouin but really distinct, and connected with the different definitions of the positive side of a surface element in Stokes' and Gauss' theorems. Chapter 6, Minkowski Space, applies this material to special relativity, as well as to de Broglie and Schrödinger waves.

Chapter 7, Riemannian Space, gives the essentials of parallel displacement, geodesies and covariant differentiation. This is then used in a short but beautifully clear presentation of the dynamics of general relativity.

Chapter 8, Hilbert Space, generalizes from real to complex scalars and from a finite to an infinite number of dimensions. The mathematical reader, who will have had misgivings during the treatment of tensor analysis, will here become quite restive. The author however keeps his goal firmly in mind, and rapidly reaches the pass from which he can lead his audience into the green pastures of linear integral equations, matrix mechanics, Hamilton and Pauli operators.

A feature of the book is its richness in physical examples, to which it is impossible to do justice in a review. As the author very well says in his Preface, a work on vectors cannot be at the same time a textbook on Physics. Still every writer on Vector Analysis is anxious to give examples, and some have given such a condensed treatment of several extended physical fields that they end by serving neither the beginner nor the advanced reader. It seems to us that Prof. Ollendorff has struck on this point a very happy balance. The treatment of the physical examples (with the exception perhaps of some at the very end) is sufficiently extended to give the reader, due in part no doubt to the author's skill, no feeling of undue condensation or hurry. Indeed any well-prepared student should find this book a most readable text, and it will introduce him to some of the most beautiful questions of mathematical physics beside those from his own special field. The Haifa Technical College should assuredly be proud of such a course, of the lecturer and of his book.

P. Le Corbeiller

The student and research worker of today is in a fortunate position, as compared with his predecessor a generation ago, when he wants to penetrate a new field of science without turning to the scattered original literature. Instead of comprehensive text books, covering whole subjects such as Hydrodynamics or the Theory of Elasticity, he may choose among a great variety of more specialized monographs which make it possible for him to avoid devouring a lot of unnecessary material. The accompanying disadvantages of this process of development are obvious, but are probably overestimated by the older generation of scientists. The development has been actively promoted by American publishers.

The book under review forms an outstanding example of this type of modern monographs. It pretends to be a first introductory treatment, written on an intermediate level, and should be easily under-
stood by the better students, having taken the basic courses in mathematics and mechanics of most engineering schools. With this principle in view, it might be said that the complementary mathematical treatment, now given in appendices, as well could have been incorporated in the main text, at least from the point of view of a European reader. To facilitate the penetration of the concentrated subject, ample references to elementary textbooks, even with indication of page numbers, are given.

Faithful to the scope covered by its title, the book gives a rather complete treatment of the theory of perfectly plastic solids according to v. Mises or Prandtl-Reuss. Interesting applications to engineering problems are given. The chapters are: 1. Basic concepts, 2. Trusses and beams, 3. Torsion of cylindrical or prismatic bars, 4. Plane strain: problems with axial symmetry, 5. Plane strain: general theory, 6. Plane strain: specific problems, 7. Plane strain: contained plastic deformation. Limit analysis, 8. Extremum principles. Cartesian tensors with subscript notation and summation conventions do appear only in chapter 8. Each chapter contains exercises and a list of references. The text and figures are distinguished by their clarity and stringency.

Those who look for physical aspects of the theory of plasticity, such as details as to recent development of the flow theory as compared with the so-called deformation theory of plastic solids, are referred to other publications.

FOLKE K. G. ODQVIST

The material in this book evolved from a series of lectures by the authors in the period from 1938 to 1940. Written up and extended during the German occupation of the Netherlands, the text was later translated from Dutch to English.

The book is concerned with the application of operational calculus to mathematics, physics and engineering, and the stated aim is a modern treatment of the subject.

There are a number of excellent features of this book. One chapter, and other sections of the book, on the treatment of the delta function seem particularly good; they deal at some length with various features of the delta function, including applications in connection with differential and integral equations. The impulse function is formulated in terms of the Stieltjes integral; the transform of the delta function is discussed; functions approximating the delta function are considered. The use of the impulse function in obtaining the Green function of inhomogeneous differential equations is discussed. The sections treating integral equations, partial differential equations, and the transformation of functions of more than one variable by means of multiple Laplace integrals are also interesting, for one reason, because of the use of the delta function techniques in connection with these topics.

The treatment of the operational calculus given in this book is based on the two-sided Laplace transform, i.e., with limits $-\infty$ and ∞ instead of the usual limits 0 and ∞. This treatment demands that the separate one-sided integrals must have a common region of convergence otherwise the two-sided Laplace transform cannot exist. The overlapping of the convergence regions or the strip of convergence must be ascertained and may require somewhat more care and attention than the usual one-sided integrals. Explicit formulae for the convergence strip for any given original function $h(t)$ are obtained and discussed in the chapter on convergence of the definition integral.

The book seems to be very carefully written and it should be of real value to the student of operational methods.

ROHN TRUELL