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Consequently, either the hypothesis of linear dependency has led to a contradiction
so that the three columns are linearly independent, or alternatively Eq. (6) must hold.
But if Eq. (6) holds, then

CjX'j' = CjX- for all A,

and A can be chosen so that at least one of x", x", x's' vanishes, so that an equivalent
solution involving fewer columns has been obtained; the same analysis may now be
applied to the new solution.

It follows that, eventually, an equally good solution utilising only linearly independent
columns will be obtained. Since not more than m columns can be linearly independent,
the theorem is proved.
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HEAT FLOW IN A HALF SPACE*
Br WALTER P. REIDf (TJ. S. Naval Ordnance Test Station, China Lake, California)

This heat flow problem has a more difficult boundary condition than usual. A formal
solution is obtained by the combined use of Laplace and Fourier sine transforms.

Let the region x > 0 have an initial temperature which is a function of x only, f(x).
Assume that there is radiation of heat from the surface x = 0 to a finite slab, and from
the other surface of the slab to surroundings whose temperature is a prescribed function
of the time, g(t). The slab is assumed to be thin and of high thermal conductivity so
that its temperature may be considered to be uniform throughout at any time. The
heat exchange by radiation between adjacent surfaces will be taken to be proportional
to the difference in temperatures of the two surfaces. Mathematically, then, the problem
may be stated as follows:

tor *>0,00, (1)

dtt(0, t)
dx

u(x, 0) = f{x), (2)

= a[w(0, t) — t>(<)], t > 0 (3)

h = a[u(0, t) - »(*)] - b[v(t) - g(t)], t> 0 (4)

f(0) = V. (5)
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In these equations u(x, t) is the temperature at some point in the region x > 0,
while v(t) is the temperature of the slab. The quantities a, b, h and k are assumed to be
positive constants.

In the following both the Laplace transform and the Fourier sine transform will
be used. This brings up the question of notation. A bar above the letter is sometimes
used to represent a transform, or a change from capital letter to lower case, or a change
in letter altogether. These methods are all satisfactory if just a single transform is used,
but have disadvantages in the present case. In Eq. (16), for example, notation for three
different transforms is needed. In this paper a transform will be indicated simply by
changing the letter used in the argument of the function, as follows:

u(x, s) = f e~"u(x, t) dt, (6)
Jo

u(£, t) = / u(x, t) sin £x dx. (7)
J 0

The Laplace transforms of Eqs. (1), (3) and (4) are:

su(x, s) - f{x) = k dU^XJ S^ , (8)

dU^ ^ = a[u(Q, s) - v(s)], (9)

hsv(s) — hV = a[u(0, s) — v(s)] — 6[i>(s) — g(s)]. (10)

Hence

[ab — (a + b)d/dx + ahi<d2/dx2 — hi<d3/dx3]u(0, s)

= abg(s) - ahf(0) + hf\0) + ahV. (11)

Let

Then

w(x, t) — [ab — (a + b)d/dx + ahnd2/dx2 — h,Kd3/dx3]u(x, t). (12)

dw(x, t) _ d2w(x, t)
dt ~ K dx2

From Eq. (11):

(13)

sw(x, s) — w(x, 0) = K d W^2 ^ , (14)

sw(£, s) - w(£, 0) = k£w(0, s) - Z2kw(£, s), (15)

w( s) = o) + yo,,) .
S + "C

w(0, s) = abg(s) - ahf(0) + hf\0) + ahV. (17)
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Take the Fourier sine transform of Eq. (12) and then eliminate the derivatives of u by
integrating by parts. This gives

w(f, t) = / u(x, t)[a(b — Hk£) sin fx + f(a + 6 — hicf2) cos fx]
Jo

dx

+ ahKtu(0, t) - 7uf du(^ • (18)

Let

<£(f) = f f(x)[a(b — hug) sin fx + f(a + b — 1ik£) cos fx] dx. (19)
Jo

Then

w(H, 0) = 0(f) + a/uf/(0) - /i4/'(0). (20)
So

,nCt cA + *£abg(s) + KfahV . .w(£>s) =  (21)

Hence

w(f, <) = fo(f) + nfrhV] exp (— ngt) + K&b [ jf(r) exp [— n?(t — r)] dr. (22)
Jo

But

2 r"w(x, t) = - I w(£, t) sin fx df. (23)
7T Jo

Therefore, from Eqs. (12) and (23),

, JN 2 r a(b — hug) sin fx + f(a +• b — /ixf2) cos fx
»<*, <) - -1 »({, i) —„,(l _ ^ + f(s +1 _ h^,— a, (24)

where w(f, <) is given by Eq. (22), and 0(f) by Eq. (19). From Eq. (3) and (24) one may
obtain v(t).

NOTE ON THE SYMMETRICAL PROPERTY OF THE THERMAL CONDUCTIVITY
TENSOR*

By M. LESSEN (University of Pennsylvania)

According to the Onsager reciprocal hypothesis, the thermal conductivity tensor
among other similar properties of matter is symmetrical. In the following note it is
demonstrated that for some cases of interest, the property of symmetry according to
the Onsager hypothesis is not a necessary piece of information.

Assuming a space filled with a continuous medium at temperature T, having a

*Received June 15, 1955.


