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THE ANISOTROPIC TENSORS*
By G. F. SMITH and R. S. RIVLIN (Brown University)

1. Introduction. We consider an nth order Cartesian tensor with components
(i? = 1, 2, 3) in the rectangular Cartesian coordinate system x{ (i = 1, 2, 3)

and components in the rectangular Cartesian coordinate system x* , where
Xi and xf are related by the orthogonal transformation

with

where Sjk is the Kronecker delta.
Then,

X* = SijXj , (1.1)

SijSik = Sik , (1.2)

«?.<.•••<» = «i,• • • SiniA>I,•••)» • (1-3)

If
, (1.4)

for all sit satisfying (1.2), then are said to be the components of an isotropic
tensor. If the relation (1.4) is valid only for a subgroup {T} of the group of transfor-
mations defined by (1.1) and (1.2) we shall describe a,-as an anisotropic tensor.
o,may then be described as invariant under the group of transformations. The
isotropic tensor is, of course, invariant under the orthogonal group.

If (1.3) and (1.4) are valid for a transformation s^ , then it follows that

^ 1111 ̂ » 1J 1 "jn * (l'5)

If Sn satisfies the relation (1.2), then we readily see from (1.5) that

" "* ifliti a * * 'in 0^

S/lt'i^Jata ' * ' ^Intn^Jlla'Wn •

It is shown in Sec. 3 that any tensor which is invariant under the gi'oup of transfor-
mations {T} may be expressed as the sum of a number of terms, formed from the outer
products of a finite set of tensors, with scalarf coefficients. This finite set of tensors,

*Received June 27, 1956. The results presented in this paper were obtained in the course of research
sponsored by the Office of Ordnance Research, U. S. Army, under Contract No. DA-19-020-3487.

■(Throughout this paper, we shall employ the term scalar in the following sense. If corresponding
quantities ip and <p* are defined in the coordinate system Xi and in each coordinate system x* , into
which Xi is transformed by the group of transformations (Tj, then if <p* = ip, we shall say that <p is
scalar with respect to the transformation group {Tj or, more briefly, scalar.
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each of which is invariant under the group of transformations {T}, is described as a
tensor basis for the group of transformations {T}.

It is also shown in Sec. 3 how such a tensor basis can be found for any group of
transformations {T} for which we can determine a polynomial basis for polynomials
in the components of an arbitrary number of vectors, which are form-invariant under
the group {T}. In Sees. 4, 5 and 6 examples of such tensor bases are obtained for the
monoclinic-domatic and rhombic-pyramidal classes of crystal symmetry and for the
case of transverse isotropy.

The results in this paper are obtained for three-dimensional space. However, it is
immediately evident that similar methods can be used to determine the isotropic or
anisotropic tensors for a space of arbitrary dimensions.

2. General considerations. Let P be any scalar polynomial in the components of
n vectors m,U), u\2), • • • , w-"\ which is form-invariant under a sub-group {T} of the
group of orthogonal transformations defined by (1.1) and (1.2). Then, if

u?r) = tiSu\T) (r = 1,2, ••• ,n), (2.1)

where ti{ is any transformation of {T}, we have

P{u?\u?\ • • • , u<n)) = P(w?(1), uf2\ • • • , ufn)). (2.2)

There exists a finite polynomial basis for the polynomials P. Let 7i , I2 , • • • , In
denote this polynomial basis. Then,

P(u?\ u?\ • • • , «<"') = Q(h , h , ■ • • , In), (2.3)
where Q is a polynomial in the indicated variables.

Let us consider the scalar polynomial

p = • • ■ «£' (2.4)

in the components of the n vectors w,-2), • • • , u\n), the coefficients a{in which
satisfy the relation

(2 5)
' "inirfii 13 s • • "f»

for every transformation of the group {T}.
It is readily seen that P is form-invariant under the transformations of the group

{T}. From (2.1), we have

•••<.«?,(1>w*,(2> • • • = a,,• • • tininuX ■ ■ ■ uj:\ (2.6)

From (2.6) and (2.5), we obtain the relation

ailia...^ufrufr ■ ■ ■ utM = ■ • ■ up, (2.7)

stating the form-invariance of P.
Since they satisfy the relations (2.5), the 3n quantities aili,...in may be regarded as

the components of a tensor, invariant under the group of transformations {T}, in the
coordinate system x, and in the coordinate systems into which x{ is transformed by the
transformations of the group {T}. We thus obtain the result: a scalar polynomial in
the components of n vectors, linear in each of the vectors, in which the coefficients are
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tensors invariant under the transformations of the group {T}, is form-invariant under
the transformations of the group {T}.

This conclusion can be readily generalized to yield the result that any scalar poly-
nomial in the components of any number of tensors of any rank, in which the coefficients
are tensors invariant under the transformation group {T}, is form-invariant under the
transformations of the group {T}.

Now let us consider a polynomial P in the components of n vectors u[2), • • • ,
u\n), of the form

P = •••«£', (2-8)
which is form-invariant under the group of transformations {T}. Then,

bt.u-t.uX ■ ■ ■ 14:' = biti,...i,utrurr • • ■ <(n). (2.9)
Employing the relation (2.1) in (2.9), we obtain

till""*» * i ^»a * * * * n • * * * ^inin^ix a * * * » * (2.10)

Whence,
^iiir'Mn tinjn • (2.11)

We thus see that the coefficients in a homogeneous scalar polynomial of degree n in
the components of n vectors, which is linear in each of the vectors and form-invariant
under the transformations of the group {T}, are the components of a tensor of rank n,
invariant under the group of transformations {T}.

This conclusion can be readily generalized to yield the result that any scalar poly-
nomial in the components of any number of tensors of any rank, which is form-invariant
under the transformations of the group {T}, has coefficients which are tensors, invariant
under the group of transformations {T}.

3. The tensor basis. Since the polynomial P defined by (2.8) is form-invariant
under the group of transformations {T}, it must be expressible as a polynomial in the
elements of a polynomial basis for polynomials in the elements of n vectors which are
form-invariant under {T}. Also, since P is linear in each of these vectors, the elements
of the polynomial basis which are non-linear in any of the vectors need not be con-
sidered. Let Ji , J2 , ••• , Jk be the elements of the polynomial basis which are linear
or of degree zero in each of the vectors. Let us suppose that

P = ■■■ J, . (3.1)
Then we readily see that

d"P
chtf'dus? • • • du?: (3.2)

_ ^ (</VJ„ • • • Ji)
' du^du?: ■ ■ ■ du'r:

The product JvJq ■ ■ ■ Jt occurring in each of the terms under the summation sign in
(3.1) is of degree n in the elements of the n vectors w-°, u\2), • ■ ■ , w,-n) and is linear in
each of the vectors. No two of the factors Jp , J„ , ■ • • , J, occurring in a single product
involve elements of the same vector. Let us assume that Jp is formed from the vectors
u\l), u?\ , Uiv) only, that JQ is formed from the vectors u-I,+1), wiP+2), ••• , w-4>
only and J, is formed from the vectors w,-*+a>, ••• , only. Then Eq. (3.2)
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may be re-written as

h -T4 QVJ» dQ~PJ°
*is "*" pc"" du^du?: ■ ■ ■ duZ' du^ditc2: ■ ■ ■ duz>

a'-j,
du\::ydu\::r ■ ■■

Since the quantities APV..., must be scalars under the transformations {T}, we see
that must be given as the sum of terms formed from the outer products of a
number of tensors of the type d"JJdudu™ ••• dw-,\ obtained by differentiating
the elements Ji , J2 , • ■ • , Jr of the polynomial basis with respect to the vectors from
which they are formed. The coefficients of these terms are scalars with respect to the
transformation group {Tj.

4. The monoclinic system—domatic class. Monoclinic symmetry may be described
with relation to three preferred directions in space. We denote these directions by the
unit vectors h, , h2 and h3 . The vectors h2 and h3 are not at right-angles and the vector
hj is perpendicular to the plane defined by h2 and h3 .

Let us choose as reference frame a rectangular Cartesian coordinate system , the
x, axis of which coincides in direction with the vector hi . The axes x2 and x3 may be in
arbitrary perpendicular directions in the h2h3 plane. Then, the group of transformations
{T} associated with the monoclinic-domatic symmetry class consists of the identity
transformation Ti and the transformation T2 defined by

T2 =

-1, 0, 0

0, 1, 0
0, 0, 1

(4.1)

Let us consider n vectors with components it"', it"', • • • , in the coordinate
system xt . Any polynomial

■■■ ,u[n\i4B\iAn))

is unaltered by the transformation Ti and is transformed into

by the transformation T2 . The necessary and sufficient condition that P be form-
invariant under the transformation T2 is that it be expressible as a polynomial in

*4r), «3r\ u[r)u[a) (r, s = 1,2, ••• ,n). (4.2)

This result follows immediately from the first main theorem of classical invariant theoryf,
according to which a polynomial basis for polynomials in fr, r;, (r = 1,2, • • • , n), which
are form-invariant under interchange of £r and r\r , is given by + j?r and £rijs + £s?jr .
Taking

fc , b , • • • , £0 = ttj", <4U, • • • , u[n\uin),u^)

fSee, for example, H. Weyl, The classical groups, their invariants and representations, Princeton
Univ. Press, Princeton, N. J., 1946, p. 36 et seq.
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and

(fi , , • • • , O = (-«i(,)» W", «3(:), • • • , W', W"')
and neglecting redundant elements, we obtain the result (4.2).

The expressions (4.2) form a polynomial basis for polynomials in the components of
the n vectors u\r) (r — 1, 2, • • • , n) which are form-invariant under the transformations
characterizing the symmetry class considered. From the results of the previous section,
we see that the quantities du^/du\r), du(3r)/du\r) and d2 {u[r)u^)/du\T)du\') (r ^ s)
define a basic set of anisotropic tensors for the monoclinic-domatic class in terms of
which an arbitrary anisotropic tensor for this class can be expressed. We note that
dt4f)/dw-r> defines the vector with components

S2i = (0, 1,0) = (or,) (say) (4.3)

in the coordinate system x{ , that du{3r)/du\T) defines the vector with components

hi = (0, 0, 1) = (fii) (say) (4.4)
in the coordinate system x{ and d2(u[r)u['))/dui{r)du(i') (r ^ s) defines the tensor of rank
2 with components

1, 0, 0

0, 0, 0
0, 0, 0.

= (?</) (say) (4.5)

in the coordinate system . Further, any tensor with components au...k in the coordinate
system x{ , which is invariant under the transformations of the monoclinic-domatic
class, is expressible as the sum of terms formed from outer products of a, , /?,- and y{l
with scalar coefficients which are invariant under the transformations of the class.

5. The rhombic crystal system—rhombic-pyramidal class. Rhombic symmetry
may be described with relation to three preferred directions in space, defined by the
mutually perpendicular unit vectors hj , h2 , h3 . We choose as our reference system the
rectangular Cartesian coordinate system x{ , the axes of which coincide in direction
with the vectors h; . The group of transformations {T} associated with the rhombic-
pyramidal class is composed of the identity transformation Ti and the transformations
T3 , T4 and T5 defined by

T3 =

1, 0, 0

0, -1, 0
0, 0, 1

Ti =
1, 0, 0

0, 1, 0
0, 0, -1.

and T6 =

1, 0, 0
0, -1, 0
0, 0, -1.

(5.1)

We can determine, in a manner similar to that adopted in Sec. 4, a polynomial basis
for polynomials P in the components of n vectors which are form-invariant under the
transformations (5.1). If these vectors have components «■", m-2), • • • , w-n) in the co-
ordinate system x( , then invariance under the transformation T3 implies that P must
be expressible as a polynomial P' (say) in the quantities u[r\ u'3r), u'2r) (r, s = 1, 2,
• • • , n). Thus,

P = P'(ulT\u(3r),ulW). (5.2)
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Invariance of P' under the transformation T4 imposes on P' the limitation

P'(u[r\ ui'\ = P'{u[T\ -ttj", tii'V). (5.3)

It is readily seen that P' must be expressible as a polynomial in the quantities u[r),
u(2r) w2'' and uir) ul'\ Such a polynomial is obviously invariant under the transformation
T5 and hence under all the transformations of the group {T|.

Following the procedure described in Sec. 3, we see that du[r)/du^ (= a< , say),
d2(t4r) ^)/du\r) duj" (r ^ s) (= , say), d\uir) ui'^/du^ du(r 7* s) (= y(i, say)
define a basic set of anisotropic tensors for the rhombic-pyramidal class. We have

(fin) =

(«.•) = (Si.) = (1,0, 0)
0, 0,

0, 1, 0
0, 0, 0

and (7,-,) =

0, 0, 0

0, 0, 0

10, 0, 1
(5.4)

6. Transverse isotropy. Transverse isotropy may be described with relation to a
single preferred direction in space defined by a unit vector h. We choose as our reference
frame a rectangular Cartesian coordinate system x{ , the x3 axis of which coincides in
direction with the vector h. Then, the group of transformations {T} associated with
transverse isotropy with respect to the direction of h is composed of the transformation
T2 defined by (4.1), the transformation T„ defined by

T =x «

cos co, sin co, 0

—sinco, cos co, 0

0 , 0,1
(0 < co < 2tr), (6.1)

and the transformation T2T„ .
We can determine a polynomial basis for polynomials P in the components of n

vectors which are linear in each of the vectors and form-invariant under the trans-
formations T2, T„ and T2T„ . Let w-2), • • • , u\n) be the components of the n vectors
in the coordinate system x,- . Then, the limitations imposed on P by the condition that
it be form-invariant under the transformations T2 , T„ and T2T„ are

P(u[r), w2r), W30) = P(u[r) cos 03 + w2r) sin co, — u\r) sin co + «2r) cos co, uir)) ^ ^

= P(-£> ,£>).

It is seen that the dependence of P on t4r) gives rise to no restrictions on the form of
P and, therefore, a polynomial basis for P is formed by u(ar) (r = 1, 2, • • • , n) and the
polynomial basis for polynomials P' which satisfy the conditions

P'(u[r), w2r>) = P'(u[r) cos co + w2r) sin co, — u[r) sinco + u(2r) cosco) ^ ^

= P'{-u[r),ulr)),

and are linear in the two-dimensional vectors wlr> (ct = 1, 2). The relations (6.3) imply
that P' is form-invariant under the group of two-dimensional orthogonal transformations,
proper and improper. Now, the quantities u(ar) u['} (r, s = 1, 2, • • • , n; a = 1, 2) form a
polynomial basis for polynomials in the components of n two-dimensional vectors
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which are form-invariant under the full orthogonal group f. Since P' is linear in the
vectors, we can omit those elements u(ar) ' for which r = s. We thus have the result
that the quantities

Uar), Ua'wl*' (r, s = 1,2, • • • ,n;r s) (6.4)

form a polynomial basis for polynomials in the components of n vectors u\r) which are
linear in each of the vectors and form-invariant under the transformations associated
with transverse isotropy about the x3 axis.

As in the previous sections, we immediately see that a basic set of anisotropic tensors
for transverse isotropy about the x3 axis is defined by du{3r) /du\r) (= a4 , say) and
d(u[r) u^/diii'* duj'* (= /3,,) (r 7* s; a = 1, 2; i,j = 1, 2, 3). We obtain immediately

(«.•) = (s3i) = (0, 0, 1)

and

Oti) — (5k-f- 52/) —

1, 0, 0
0, 1, 0
0, 0, 0

(6.5)

ON A PRINCIPLE OF RECIPROCITY BETWEEN HIGH- AND LOW-FREQUENCY
PROBLEMS CONCERNING LINEAR DIFFERENTIAL EQUATIONS OF

SECOND ORDER*
By AUREL WINTNER (The Johns Hopkins University)

1. The following considerations, in which nomenclature and point of view will be
the same as in two earlier notes1, deal with the oscillatory case of the differential equation

3" + f(t)x = 0, (1)
in which f(t) is a real-valued, continuous function for large positive t, and x(t) is any
real-valued solution distinct from the trivial solution x(t) = 0.

If (1) is oscillatory when f(t) = and if fi(t) ^ /2(<), then (1) is oscillatory
when /(/) = This follows from Sturm's comparison theorem, which implies also
the following fact: If (1) is oscillatory and if dn = d„(f) = dn({; x) denotes the distance
t„+1 — L , where tn = /„(/; x) is the nth zero of a solution x = x(t) = xf(t) of (1), then
lim sup rf„(/,)/d„(/2) < 1, where n —> «>, holds whenever f2(t) — f^(t) exceeds a positive
lower bound as t—* <».

By choosing fl(t) = co2, where w is a positive constant, and letting w —* °° or w —» 0,
it follows that dn(f) —» 0 as n —» =» if

/(<) —> «> as t —» oo , (2)

fSee, for example, H. Weyl, loc. cit. p. 52 et. seq.
♦Received July 5, 1956.
'A. Wintner, Quart. Appl. Math. 7, 115-117 (1949) and 13, 192-195 (1955). These two papers will

be referred to as [1] and [2] respectively.


