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and Borg's proof of (7) for the case (8). In fact, even the use of (4) is6 between the lines
of that step in Borg's proof of (7) in Liapounoff's case which leads from [«, c] and [c, 6]
to [a, 6], where c is defined by x(c) = max x(t).
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The purpose of this note is to show that the maximum speed in a singularity-free
region of any steady subsonic flow must occur on its boundary, provided the flow is
isentropic and irrotational. The corresponding result for irrotational flows of an in-
compressible fluid is well known.

Since the flow under consideration is irrotational, the square of the speed q is given by

Q2 = V.iV.i (1)

in which ip is the velocity potential, the summation convention is used, and, with Cartesian
coordinates,

dtp

is the jth component of the velocity vector—with the usual minus sign suppressed for
convenience. The equation of continuity is, for steady flow,

{pv.i),i = 0 (2)

in which p is the density. The equations of motion are

(In p),,- = (q2 + 2gx3),i (3)

if x3 is measured in a direction opposite to that of the gravitational acceleration g, and
c is the local speed of sound. Finally, the Bernoulli equation can be written in the form
(with p indicating pressure)

c2 = k 22 - (g2 + 2gx3) (4)
Po ^

in which k is the ratio of the specific heat at constant pressure to that at constant volume,
and the subscripts zero indicate that the quantities involved are taken at some point
of reference, where the gas is at rest and from which x3 is measured.

For a proof, it is sufficient to show that the Laplacian of q" is non-negative. Whereas
this is easily done for irrotational flows of an incompressible fluid, it cannot be readily
established for the flows under discussion. Professors D. Gilbarg (through his publi-
cations) and C. Truesdell (by oral communication) have indicated to the writer that

6G. Borg, Amer. J. Math. 71, 68 (1949); see also P. Hartman and A. Wintner, ibid., p. 209.
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the non-negativeness of V2q2 can be replaced by that of

(Ms2)..-,-
if the matrix £>,, is positive definite. It will be seen that their suggestion provides one
of the key steps to the following proof.

Taking the Laplacian of Eq. (1), one has

(q2).a = = 2<p,u<p,ii + 2<p,i<e.ni • (5)

But Eq. (2) can be written as

<p.a + (In = 0

so that

V.iV.m - ~ [(In p),,<p.i\,i<p,i = —(In p)— (In p) .uV.iV.i

and Eq. (5) becomes

(<t).a — 2v.ijv.a — 2(ln p),i<p.a<p,i — 2(ln p).uV.<V.i • (6)

By virtue of Eqs. (3) and (4), one has

-2(ln = \ (q2).u<P,i<P.i + k 2c*1 (q2 + 2gxj.iiq* + 2qx3),i<p,i<p,i . (7)

If

2v.iv.a = (?2),.- ̂  0
then <i cannot be a maximum. Therefore, one can concentrate on the case

2v.iv.a = (q2),i = 0. (8)

In this case Eq. (6) becomes, after substitution from Eqs. (7) and (8),

r 2\ 1 / 2\ , 2 g2(k — 1) . .
(q),ii — ^2 <P.iV.i(q )..■/ = 2 H ~4 

or

hj(q2).ii = 2<p.u<P.ii + 2g ^4~ ^ SitdiaV.iV.i = positive (9)

in which

bit = Sn —\<p & ; , and 5,-, = the Kronecker delta. (10)c ' '

Now since the flow is subsonic,

, oSP , O? ̂  1

c2 ~~

Then obviously if

b'u = - 4 (11)
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is positive definite, bu must also be. The proof will therefore be complete if one can
demonstrate that b',- is positive definite, i.e., the bilinear form 6', is positive definite—
?<i , u2 , and u3 being any three real numbers. But

b'jUiU,- = \ [(Wi^,2 — u2tp,,)2 + (u2<p,3 — U3<fi,2y + (ihv.i — Mi*»,s)S]. (12)

Thus b'a and therefore are positive definite, and Eq. (9) shows that the maximum
value of q2 must occur on the boundary of any singularity-free region.

Since the Bernoulli equation is

fc V , 92 ,
j. _ Y p~^~ 2 gX3 = constant

and the equation for isentropic change is

pp~k = p0pok = constant,

minimum pressure, minimum density, and (from the equation of state for perfect gases)
minimum temperature are always associated with the maximum value of

92 + 2 gx3 .

If now one takes the Laplacian of q2 -f- 2gx3, one can show by a procedure strictly similar
to the foregoing one that the maximum value of q2 + 2gx3 must occur on the boundary
of any singularity-free region. Thus for any such region of a steady subsonic flow, the
minimum density, pressure, or temperature must occur on the boundary, provided the
flow is irrotational and isentropic.

The boundary of a singularity-free region is, of course, not necessarily a solid
boundary. However, in the case of an ambiently uniform flow past closed solid bodies
placed in an infinite fluid, one may compare a streamline at infinity with another not
entirely at infinity. Both streamlines can be considered to originate and terminate at
the same potential planes (on each of which <p is constant). Since there is variation of
speed on the latter streamline, the maximum speed thereon must exceed the uniform
fluid speed at infinity. This fact, plus the theorem for the speed just proved, shows
that, for any ambiently uniform flow of the kind under discussion, the maximum speed
must occur on one of the solid boundaries present in the flow if it is free from singular-
ities—since the entire fluid space bounded by infinity and the solid boundaries can be
taken to be the region under consideration.

A flow with uniform ambient velocity U past a solid body is physically the same
as one caused by that body moving with velocity — U in an otherwise quiescent infinite
fluid, i.e., the distributions of pressure and density relative to the body must be the
same for both cases. Thus, if gravity is ignored, the minimum density, pressure or
temperature in a subsonic flow caused by a body moving steadily in an otherwise quiescent
fluid must occur on the boundary of that body if the flow is isentropic, irrotational, and
free from singularities.


