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HEAT FLOW IN A CYLINDER*

BY
WALTER P. REID
Michigan State University

Summary. A formal, analytical solution is given to the problem of finding the tem-
perature in a cylinder which is gaining or losing heat by radiation exchange with a
concentric, thin-walled metal tube. The tube in turn is radiating to, or receiving radiation
from, its surroundings. A general treatment of systems with this type of boundary
condition is presented first, and then the given problem is solved as a particular case.

Introduction. The problem being considered is that of radial heat conduction in an
infinite, right circular cylinder surrounded by an air space, and then by a thin-walled,
concentric, cylindrical tube. The tube is assumed to be a good thermal conductor, so
that its temperature may be considered to be uniform throughout at all times. The rates
of heat exchange between cylinder and tube, and between tube and surroundings are
taken to be proportional to the respective temperature differences. The temperature
of the surroundings is assumed to be some specified function of the time.

The feature that makes this problem of interest is the boundary condition. It is
given by Eqs. (31) and (32), although the nature of the boundary condition is more
easily seen if w (the temperature of the surrounding metal tube) is eliminated from
those equations. The surface temperature of the cylinder, v, is then seen to satisfy the
equation’ :

ou ou X
o+ 0 S+ o+ o = asgll),  (t0),

where the ¢’s are constants. This same boundary. condition was handled earlier [1] for
a semi-infinite medium. However, in the present case, thé medium is of finite extent in
the direction of the heat flow, and so the method of Ref. [1] cannot be used here.

It will be seen that the answer to the present problem is obtained as a series of func-
tions which do not satisfy the usual orthogonality equation, but which satisfy instead
the modified orthogonality relation given in Eq. (14). Before tackling the given heat
flow problem, it is convenient to derive this modified orthogonality condition and some
other preliminary results.

Modified orthogonality relations. Let

U‘—"Eu,., U=Zvny W=an, (1)

a% [P(r) %‘] + QM) + &80 . = 0, @

VU = (Cl + Dl% n(Ll ’ t)y (3)

*Received July 8, 1957. The solution to this problem was begun while the author was at the U. 8.
Naval Ordnance Test Station, China Lake, Calif.
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w, = (€2 + D Dhuta , 0,

[(Al - len) + (B, — ngn) ™ u»(Ll ) ),

= [(Az - CzEn) + (Bz - D2En) A n(Lz ) t)‘
Then

% [P(r)u,, % — P(u, %] =g [P(r) | — U o [P(r) ——]

= (& — zi)S(r)u,.u,, .
So

A — CE)A, — CAE — B) f " Sr)uty dr

= (4, — C:£)(4, — C'zsi){P(L._,)I:un(L2 ) ‘M%_)_ wlLy 1) au,,({;: , )]

= 4, - cp@) L (4, — ) + B - D2 Juta 1
— (4, - P L0 [ (4, o) + B - D)2 Juz. 0
= (4, — lek)P(Lz) aLk(L;—’t) [(Az + B, %) - 52(02 + D, g—r)]un(Lz , )
— (4, — ng)P(Ll) ML]_,_t) [(Al + B, g_r) - E:(Cl + D, g;)]un(l’l )

au"(Lz Y & — Bw,

auk(Ll ’

= (Al - CIE:)P(LZ)

— (4 — CEAP(L) WL D gy,

Hence
L,
(E: - E:)[(Al - ClEi)(Az - szi) fL ST u.u, dr

auk(L, y t)

+ (4s — C)P(Lio, =2

du(L, , t)
- (A, — ClE:)P(Lz)wn _—61'——] = 0.
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The expression in brackets is thus equal to zero for n 5 k. This gives a modified ortho-
gonality relation. In the special case when C;, = C; = D, = D, = 0, the development
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above is seen to reduce to the usual orthogonality treatment, as given, for example,
in Ref. [2]. Equation (13) is not useful if 4, and C, are both zero, or if 4, and C, are
both zero. However, other equations may be derived in a similar manner for these cases.
For example, by multiplying Eq. (8) through by (B, — D,¢) (A, — C.£) and then
proceeding as in Egs. (9)-(13), one obtains:

@ - s:)[(Bl — DAy — C) [ SO dr
— (B, — DEPLyyw, L2t

ar

0. (14)

= (4, — CEP(L)vudLy , t)]

This equation will be used in solving the present problem.
An expression for the kth coefficient. If

Uy = ROTD, 0= ¢Ta(), w. = %T.0), (15)
then from Egs. (14) and (15) one finds

10| B — DA~ G [ SOREdr — PLIWB, — D,g el

- P(Ll)¢k(‘42 - Czﬁ)Rk(Ll)] = (Bl - DxE:) j; ' S(r)uR,‘ dr

éRk(Lz) — P(L)(A, — C.E)R.(Ly). (16)

— P(L;)w(B, — 1&)
Both sides of this equation were obtamed by summing the brackets of Eq. (14) over n.
On the left side of Eq. (16), however, use has been made of Eq. (15), and the fact that
the brackets of Eq. (14) is zero for n # k, while the right side of Eq. (16) was determined
by interchanging operations of integration and summation, and using Egs. (1) and
(15).

If one sets ¢ = 0 in Eq. (16), he obtains T.(0), and hence the kth coefficient of the
Fourier series for u. For the case when the surroundings are at constant temperatures,
Eq. (16) therefore enables one to complete the solution to the problem. Equation (16)
with ¢ = 0 is usually obtained by getting the Fourier series for the initial value of u,
multiplying by the kth eigenfunction, and integrating. The orthogonality relation then
causes all terms of the series but the kth to drop out, and thus gives the kth coefficient.
However, that procedure is not convenient to use in the present case because of the
nature of the orthogonality relation—see Eq. (14)—hence the need for Eq. (16).

The fact that the temperature of the surroundings in the present problem of heat
conduction in a cylinder is a prescribed function of the time can be taken care of by
means of Duhamel’s theorem. However, this turns out to be a bit lengthy in the present
case. For this reason, the following development will be used instead.

A substitute for Duhamel’s theorem. Let it be assumed that, in addition to Eqs
(1)-(6) and (15), the following equations are also satisfied

2 [P(r) ‘;’,—1—,‘;] + uQ() = i[) &, (17)
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[ - cor+ @ - DLl 0 = 560 - (L + 4)%2,

[(Aa — Caf3) + (B — Dofy) %]u(Lz o 1) = E\Gy(t) — (& + ,(g) %K‘)
Then, from Eqs. (2), (15) and (17)

2 [P(r)R,, & _ ph "—R*] &, 2 [P(r) %1;] wd [P() ng]

- SOR(Z + ).
So, from Egs. (5), (6), (15), (18), (19) and (20), one finds

(B, — D&)A, — og:)(g—t + Kg:) fL “ SR, dr
= «(B, — D&)(4s — cf)P(L»[Rk(Lz) Wlasd _ oy, "’R“L’)]
— B, — D)(4s — CDPL| Ry 2Ll _ o, o Bl ]
=~ - DPL) T [ (4, — cd + B, - D) Juta 0
- K(Az - szi)P (Ll)Rk(Ll)[(Al - lei) + (Bx - le:) %]u(L, ) t):
= @ - DePw) B [(L 1 ity — Ea6i) |

+ (4, — (J,gi)P(L,)llz,,(L,)[(a + ng)v(t) —E, KGl(t)].
Hence
(a% + xel)[(B, — D& (A, — Cof2) f - ‘S(r)uR, dr

OR»(Lz)

— (By — DEP(Ly) — > w(t) — (4 — Coki )P(Ll)Rk(Ll)v(t)]

= (D& - BIP() 2L 1,06, (1) + (€t~ ADPELIRALIEG(D).

This is first order linear, and so may be integrated to give

@ - D, - e [ sk, ar — B, ~ Daypw Bl
— (4. — sz:)P (Ll)Rk(Ll)v(t)] exp ("E:t)

= B - DA~ €D [ SO, O, ar

(18)

(19)

(20)

@1

(22)

(23)

(24)
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~ B, ~ DgP(L) el o) — (4, - CHOPLIRALIO — (25)
+ 0 - ByPa) Ed g [ 6.0) e (i) dr

+ (€ = ADPLIRALIEwx [ " Gu(r) exp () dr.

If this equation is divided through by exp (k;t), the left side will be the same as the right
side of Eq. (16). Hence :

T,,(t)[(B, — D)4, — C) S<r)Rk dr — P(L)y(B, — D) Zlke)

- P (L1)¢5(A2 - sz:)Rk(Ll):I = [(Bl - lei)(Az - nge) fL ' Sr)u(r, O)R, dr

6R,,(L

— (B: — DE)P(L;) — IEulls) w(0) — (4: — Cin)P(Ll)Rk(Ll)v(O)] exp (—xkit)  (26)

+ (D& ~ BIPL) LeL) g [ G,(2) exp (ki — D) dr

+ (€ — ADPLIRALIE.x [ "Gy exp [k(r — D] dr.

This equation may be used to obtain T',(¢) when R, (r) is known. Its use will be illustrated
by solving the problem stated in the introduction.

A formal solution to the problem of heat flow in a cylinder. With the results de-
veloped above, it will now be relatively easy to solve the heat flow problem stated in the
introduction, and, incidently, a number of related problems.

Let u(r, t) be the temperature in the cylinder at a distance r from its axis, and w(f)
the temperature of the surrounding tube. Then the problem may be formulated math-
ematically as follows:

dt

kK 9 u u
-5 @0
utr, 0) = 1), (28)
w0) = W, (29)

u, 8

o = 0, 30)
2L D _ oy - wiz, 1), (31)
R — G, ) — w()] + blg(®) — w(H]. e
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In these equations k, a, h and g are positive constants, f(r) is the initial temperature of
the cylinder, W is the initial temperature of the tube, and g(t) is the temperature of the
surroundings. Equation (32) arises from physical considerations. However, for math-
ematical purposes it is preferable to replace it by the following equation, which may be
obtained algebraically from Eqs. (31) and (32):

a(d — hetdw(L, t) + (@ + b — h«t) W = abg(t) — ah(d% + xsi)w(t). (33)

In order to solve for u it is merely necessary to find the radial eigenfunctions, R, ,
and the equation satisfied by the eigenvalues, £, . The solution can then be completed
by means of the results developed above. The R, and £, will be obtained by the method
of separation of variables. To apply this method, one must first set g(f) = 0. The R,
and &, obtained in this way will still apply for g(¢) == 0.

Let » and w of Egs. (27)—(33) be represented by the series given in Eq. (1), where
u, and w, are assumed to be of the form given in Eq. (15). Then, for g(tf) = 0, the u,
and w, will each satisfy Eqs. (27)-(33), and so by the method of separation of variables,
one finds from Eqs. (27) and (30) that

u, = E, exp (—«t:t)Jo(t,r) when g(t) = 0. (34)
From Eq. (31), then
aw, = E, exp (— «tt)[aJo(t.L) — £J:(6L)] when g(f) = 0. (35)
Hence, from Eq. (33) with g(¢) set equal to zero, one obtains
a(b — hg)Jo(6L) = &a + b — hug)J1(EL). (36)

This is the equation which determines the eigenvalues, £, .

Now that the eigenvalues have been determined, the standard separation of variable
procedure will be discontinued. The restriction that g(t) = 0 will no longer be imposed,
and Eqs. (34) and (35) will be generalized to

U, = T(Jo(tar), @37
aw, = T.(§)[alo&L) — &J.(EL)]. 38)

Equations (27), (30) and (33) are special cases of Eqgs. (17), (18) and (19) with
P@)=r, Q) =0, S6) =7, A, =Ci=D,=E =L =0t =0, (39)
A, = b/(hy), B, = (a 4+ b)/(ahx), C,=1, D,=1/a (40)
E, = b/(hx), Gi(t) = g(t), L, = L. (41)

With the particular choices for constants and functions given by Egs. (39)—(41), it will
now be seen that the u, and w, of Egs. (37) and (38), with £, given by Eq. (36), satisfy
Egs. (1)-(6). Moreover, Eq. (31) agrees with Egs. (4) and (1), and Egs. (27), (30) and
(33) with Egs. (17), (18) and (19). Hence all the conditions used in deriving Eq. (26)
are now satisfied, and so T,(t) may be obtained from Eq. (26). Upon using Egs. (15),
(28), (29), (37) and (38), and changing subscripts from % to #, one finds
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€xp (— "Eit) ) (42)

a(b~hetd) [ o Tue e+ h LI G D)+ b LI GD) [ aexp(agin)ds

a(b—hatd) f PI2E)dr+hiL[ad o(EaL) —Eud s (6. L) e (6L

Temperatures u and w are now found by combining Egs. (1), (37), (38) and (42).
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