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NOTE ON A PAPER BY J.R.M. RADOK*

By IAN N. SNEDDON (The University of Glasgow, Scotland)

It is of interest to note that the complex variable solution of the equations of dynamic
plane elasticity recently derived by Radokf can be arrived at by splitting the displace-
ment field by the classical decomposition

d<t> . dil/ d\// , d<t>u = -—b , v = — ——H t—dx dy dx dy

and noting that the wave equations

c2iV2,</> = <t>", CjV i"

to which they lead have solutions of the form

<t>{x — ct ± ifiiy), \f/(x — ct ± if}2y)

with &[ = 1 — c2/c\ , f}\ => 1 — c2/c\ . The details are given in a paper published a few
years ago**. Radok's solution (4.4) is immediately derivable from my equation (8) by
replacing my /' and g' by —</>/m and «(1 + (2^/32) respectively.

AN ALTERNATE SOLUTION OF STEFAN'S PROBLEM{

BY

ARTHUR L. RUOFF (Cornell University)

The author, using a simple transformation, has solved two cases of Stefan's problem.
These problems have been solved earlier by Stefan [1] and by Neumann [1] by other
methods. There are a number of problems governed by the parabolic differential equation
with a moving boundary condition. Such a problem is the melting of a solid in which
case a finite heat sink exists at the position of the moving boundary. A similar problem
exists in certain crystalline transformations. These problems, known as moving boundary
problems or Stefan's problems, also arise in studies of gravity drainage and seepage of
oil from sand beds during pumping.

The first problem considered here is the same as that studied by Stefan, being the
case of a solid initially at the melting point with one face brought instantaneously to
some temperature above the melting temperature and held constant thereafter. The
remaining sides are considered as insulated so that the heat flow is one dimensional.

The second problem is the same as that discussed by Neumann, i.e., the moving
boundary problem for a semi-infinite bar initially at a constant temperature below the
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melting temperature with the leading face brought to some higher temperature instan-
taneously.

Solution of Case I. Consider a rod of ice at 32°F. Bring the face of the rod to some
temperature ?/(0, t), the other faces being insulated. At a given time the equation

d2u(x, t) du(x, t) ,,N
a~dxr- = —dr> (1)

where

a = k/Cvp

describes the temperature in the liquid region. The boundary conditions are, say,

«(0, t) = 0, (2a)

u(x(t),0) = C, (2b)

-kf - pAH,x\t),
where C is the temperature of fusion, x(t) is the distance of the ice-water interface from
the front face, p is the density, AHf is the heat of fusion and x'(t) is dx/dt or the rate
at which the interface moves.

This last equation may be written as

du
dx = ~x\t), (2c)

*-*(<) «
where A = AH,/Cv .

Transforming Eqs. (1) and (2) in terms of

y(x' l) = 2(of175 ' (3)

we obtain the equation

with the boundary conditions

d\ . _ du
? + 2y ^ = 0 (4)

w(0) = 0, (5a)

u(y(t)) = C, (5b)

= 2 A[y(t) + 2 ty']. (5c)du
dy

By direct quadrature Eq. (4) yields

^ (6)dy
and

J du = 13 J e~"° dy + c. (7)
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Applying (5a) and (5b) to the latter gives
*v(0

C = fi / dy. (8)
Jo

Hence y(t') = y, a constant, since C is a constant. This immediately gives the time de-
pendence of the position of the moving boundary,

Equation (5c) now becomes

and Eq. (8) becomes

x(t) = 2y{at)u\ (<))

-/Je-1" = 2Ay (10a)

C = fi f e~"' dy. (10b)
Jo

The equations (10a) and (10b) can be readily solved for y and 0 by first eliminating (i and
solving the resulting equation for y since the distribution function and the error function
are both tabulated.

Finally

ffife-''dy (11)
J 0

subject to 0 < y < y, a condition which requires that the solution hold in the liquid
region only.

Solution of Case II. Dividing the bar into region I which is the fluid region and
region II the solid region, we obtain the following conditions on the rate of heat flow:

d2iij d'Ui
a' dxr ~ ~di (12)

u,(0, t) = 0, (12a)

Ui\x{t), <] = C, (12b)

-fc, ^ = PAHfx\t) - kn ^ , (12c)

d Uij 3Un /io\= (13)

Uu[x(t), t] = C, (13a)

«ii(°°, 0 = u(x, 0) = T0 , (13b)

®(0) = 0. (13c)

For convenience it is assumed that the density does not change. A further assumption
is that equilibrium conditions are satisfied at the interface as regards temperature and
state of aggregation; since the process of melting is a rate process it is expected that the
above approximation would not be valid for extremely rapid heating rates. The problem
of recrystallization of metals is often complicated in such a way. For example, the trans-
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formation from the face-centered cubic form in steel to the body-centered form is a
rather slow process so that the condition (12c) is further complicated by the addition
of some time-dependent factor on the expression pAHfx'(t). There are, however, crystal-
line transformations which fall into the category described by Eqs. (12 and 13), these
being the metals in which pure martensitic-type transformations occur.

In order to solve the given equation let

Equation (12) now becomes

while (12a, b and c) become

, dui
fcl dz

Similarly Eq. (13) yields

with the conditions

2 = x/tW2. (14)

d'ut zdui . .
airf?"+2&=0' (15)

m^O) = 0, (15a)

Ui[z(t)} = C, (15b)

= pAHf(tz' + z/2) — k dun
11 dz

(15c)

d Uxx , Z dUu r> /in\
2 ~dz = (l6)

"ii[z(<)] = C, (I6a)

Wn(°°) = To . (I6b)

We leave the condition z(0) unspecified for the time being. Treating dui/dz as the
dependent variable Eq. (15) can be directly integrated, yielding

dui „ — z2^ - f exp (17)

Repeated integration gives

i""' — z'C = / duj = / exp —— dz. (18)
Jo Jo i

This implies that z(t) = 7, a constant. This then gives for the temperature in the
liquid region

I" —z2Ui = 81 exp —- dz, (19)
J 0 4:CXi

where 81 is yet to be evaluated. Moreover, it gives the position of the moving boundary
as a function of time

•r(0 = ytI/2, (20)

where 7 is yet to be evaluated.
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Integration of Eq. (16) is carried out in the same way, yielding

duu —z2-A,exp-„

and
%T o r>03 2

= Pn exP (21)

r ° r —z
/ dun = f}u / exp — dz (22)

Jc J*(.n 4an

where z(t) — y.
Equation (22) may be rewritten in the form

T0 - C = j8„ f exp -— cfe — j8n [ exp <fc. (23)
J o 4cku Jq 4a:ij

The heat balance condition (15c) at the moving boundary has not yet been used.

-Mi exp ■— = - kuPu exp (24)

Equations 18, 23 and 24 are sufficient for obtaining ft, ft and y. From Eq. 18 we obtain

"■-c[fex"Sr*] <25)
and Eq. (23) yields

ft, - (T. - «[( exp & - fj exp <fe] . (26)

Substitutions of (25) and (26) into (24) gives an equation involving y only. This can be
solved by trial and error for y. Then ft and (3r! are readily available from Eqs. 25 and 26.

Finally, the position of the moving boundary is given by Eq. 20 and the expression
for the temperature is given for regions I and II, respectively, by

Ui -"■I expjfr<fe' (27)
where z < z(t) = y,

and,

with z > z(t) = y.

Mii = T0 — fti J exp dz (28)
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