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and (16) gives

2_'34_(Y:.4 + Y:.—4 + Y;d,( + Y;L—d)
(20)

35\ 4,0 -4.0 0.4 0,4 7 o0
+(§8—8_ (Y4'+Y,,'+Y4’-|-Y4' )+1_2'Y4'

as a properly invariant function.
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whose assistance this work would have been impossible.

ON THE MOTION OF A SIMPLE PENDULUM*

B?r BORIS GARFINKEL (Ballistic Research Laboratories, Aberdeen Proving Ground, Md.)

Abstract. The vanishing of the tension in a simple pendulum supported by a flexi-
ble cord causes the particle to pass from the circular to a parabolic trajectory. The
number and the nature of such transitions are related here to the value of the initial
energy.

1. When the initial energy of a simple pendulum lies in a certain interval, the tension
vanishes at some instant of the motion. Then, if the support is provided by a flexible
cord, the particle passes from the circular to a parabolic trajectory. The number and
the nature of such transitions are shown here to be precisely related to a dimensionless
energy parameter, £. Despite the intrinsic interest and the relative simplicity of this
motion, it does not appear to have been treated in the literature.

Let I be the length, m the mass of the pendulum, r its distance from the point of
support, 8 the angular coordinate measured from the downward-drawn vertical line,
and g the acceleration of gravity. The constraint

l—r>0 )
can be replaced by the condition
Ml=17) =0, )]

where A is a multiplier vanishing if I > r and admitting a non-zero value if Il = r. The
Lagrangian of the system,

L = 3m@? + r°0%) + mgr cos  + NI — 1), 3
leads to the differential equations of motion,
mir" —r8° —gcosd) +A=0, 70 +2r0 + gsinb =0, 4)

which together with (2) and (1) determine the functions r(t), 8(f), A(f) when the initial
conditions are prescribed. From (4.1) the multiplier A({) can be identified with the
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tension of the cord. Let the initial conditions now be:
r(0) = I, 6(0) = 0,
') =0, 6(0) = (2E/ml)"?,

E being the initial energy measured from the lowest point. Then the particle moves
in a circular are r(f) = ! until X vanishes. The integrals of the motion, deduced from
(4), are

(0'/w)® —2cos 8 =22 —1) =3¢  sin (6/2) = min (1, ¢) sn [wt/max (1,¢)], (6)

where the constants w, ¢, ¢ are defined by

(5

o' =g/l, & =E/2mgl, §=32" -1, @)
and the modulus of the elliptic function sn is
« = min (c, 1/¢). (8)

The dimensionless parameter £ is seen from (7) to be proportional to the energy measured
from the horizontal configuration r = [, § = x/2;itsrangeis — 2/3 < £ < .

2. At the instant ¢ = ¢, of the vanishing of the tension the coordinates and their
derivatives, obtained from (4.1) and (6.1) with the substitutions A\ = 0,r = [, 7" = 0,
are given by

cos 0, = —§, r =1,

bi/w = £, 1 =0.

Hence 6, and 6; are real if and only if £ lies in the range
0<t<1, (10)

and 7/2 < 6, <m0 <6 <w Att =t there occurs a transition from the circular to
a parabolic trajectory. The latter corresponds to the solution of (4) with A = 0, < [,
and the initial conditions (9), and is represented by the equations

/D) =1 — (7)'EQ — )] — (wn)'/4, (11)
rsin 8/l = (1 — £)"* — £%(w7),

(9)

where

T=10t— 1. (12)
When the particle re-enters the circle, r again assumes the value r = [, and (11) yields
41 — 17,
6, = 2r — 36, , ry = 1
6, = 6;(—3 + 128 — 8¢,
r; = 8lolt(1 — £

Such an alternation of the trajectory between the circle and a parabola we shall, for the
sake of brevity, designate by the term ‘flip.”” At the instant ¢ = ¢, of re-entry of the
circle the ideal cord, assumed to be inextensible and infinitely strong, enforces the

I

wT

(13)
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constraint (1) by generating an impulse equal and opposite to the radial momentum
m’. While the latter is being annihilated, the angular momentum mr°6" is conserved,
and the energy is thus diminished by the quantity mr */2. The corresponding diminution
of ¢ can be calculated from (13.4) and the definitions (7); the new value ¢’ can then be
written as a function, f(£), in the form

¥ =10 =t- S kA -BF, for 0<E<L. (14)

Of course, if £ lies outside the range (10) flips do not occur and the energy is conserved.
Therefore

f€) = & for &1 -8 <. (15)

In particular, — 2/3 < ¢ < 0 and ¢ > 1 correspond to the states of oscillation and
circulation respectively.

A few curious details of the motion will now be summarized.

1. “Oscillatory’’ flips, for which the sense of 6; is opposite to that of 6; , occur if
0 <t<}[3— 3" = 0.56; “circulatory” flips occur if 0.56 < £ < 1. The separating
value corresponds to 8, = 0.

2. The maximum energy loss per flip corresponds to ¢ = 37'? = 0.57, with the
parabola passing through the point of suspension.

3. The “amplitude’ of a flip can be defined as & = | sin [(6, — 6,)/2]). Its maximum
a = 1, corresponds to ¢ = 27* = 0.71, §, = 3x/4, 6, = =/4; its minimum, a = 0,
occurs whent = 0,6, = 6, = r/2and whené( = 1,0, = 6, = .

4. The entire history of the motion can now be described in terms of the function
f(z), which is graphed and tabulated below, together with the corresponding values of
6, and 6, . '

Fi1G. 1. Graph of the function f (z).
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TABLE 1
Function f(z),0 <z <1

z l(:c) 6, 61

0.0 0.000 90°.0 90°.0
0.1 0.079 95 .7 72 .8
0.2 0.049 101 .5 55 .4
0.3 -0.134 107 .5 37 .6
0.4 —0.409 113 .6 19 .3
0.5 —0.625 120 .0 0.0
0.6 —0.608 126 .9 —-20 .6
0.7 -0.271 134 .4 —43 .3
0.8 0.290 143 .1 —69 .4
0.9 0.793 154 .2 —-102 .5
1.0 1.000 180 .0 —180 .0

Some of the important properties of f(x) are listed below:

1. f(z) is of class C?; i.e. it has continuous derivatives up to the second order in its
entire domain — 2/3 < £ < o,

2. The stationary values of f(z) are given by min f(x) = — 0.655 = f(0.544), max
f(x) = + 0.086 = £(0.130).

3. The real zeros of f(x) are:

z =0, r, = 0.236, z; = 0.751.

4. These zeros, together with the boundary point z, = — 2/3 and the recursive
relation

f(xkﬂ) = Tk+2 » k=0,1,---, (16)

define a monotone increasing sequence {z,}; k = 0,1, --- , converging to 2, = 1. This

result follows from the facts that z, and z, lie in the interval max f < z < 1, that in
this interval the inverse function f~'(r) is defined and is bounded by the inequality
z < f'(z) < 1. The first nine terms of the sequence are:

—0.667, 0.000, 0.236, 0.751, 0.791, 0.889, 0.899, 0.930, 0.935, ---, (17)
The value ¢ lies in some interval I, , such that
o <E<zy f —2B3<E<KI1,
k= o if 1<E< @,

(18)

The three intervals k = 0,k = 1, k- = o are the only stable states of £, in the sense that
the system once in such a state will remain in that state forever. In particular, the
two extreme states, k = 0, — 2/3 < £ < 0,and k = »,1 < ¢ < « are the classical
oscillation and circulation respectively. The state k¥ = 1, 0 < £ < 0.236 contains an
infinite succession of oscillatory flips whose amplitude converges to zero; the motion
converges to an oscillation with § = 0, max 6 = /2. In all other states a flip results in
the jump Ak = — 2 in the step-function k(). Consequently the particle executes
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[k(0)/2] flips before descending to the state & = 0 if k(0) is even or to the state k = 1
if £(0) is odd. The bracket above denotes the integral part of a number. The total number
N of flips and the ultimate state k() of the system are hence given by the following
table.

TABLE 2
History of the motion
k(0) N k() Ultimate state
even [£(0)/2] ‘0 oscillation
odd © 1 flipping
© 0 © circulation

As an example, consider £(0) = 0.777. From inspection of the sequence (17) it is
seen that k(0) = 3. After one flip the system reaches the state k& = 1, characterized
by an infinite succession of flips, as indicated in Table 2. It is to be observed that if
the support were rigid the pendulum would circulate, since £ exceeds the critical value
¢ = 2/3, (¢ = 1), which separates the oscillatory and the circulatory states in the classical
case.

4. Summary. In the case of a simple pendulum supported by a flexible cord, when-
ever the tension vanishes the particle passes from the circular to a parabolic trajectory.
The energy loss occurring upon re-entry into the circle is given by the expression

f@) =2 = —5 b0 -, ©<z<1)

where z and f(z) are the old and the new values of the energy, measured from the hori-
zontal configuration 8 = /2, and normalized by a divisor 3 mgl/2. The state of the
pendulum is characterized by an integer k, such that

L L2 < Ziwr (x< l)’
k= o, (x> 1),

where the sequence {z,.}; k = 0, 1, - - - , is monotone increasing, converging to r., = 1,
and defined by
f@ess) = Thsa k=o0,1,---

Ty = ‘_%, r, = 0, Ty, = 0.236, T3 = 0.751.

Here z, , z, , and z; are the three real zeros of f(z), and z, is the lowest possible energy.
The two extreme states ¥ = 0 and k¥ = « correspond respectively to pure oscillation
and pure circulation. The state & = 1, which does not arise in the usual case of a rigid
support, contains an infinite succession of parabola-circle transitions. The three states
E=0k=1and k = o are the only stable states, in the sense that the system once
in such a state will remain in that state forever. From an unstable state the system will
ultimately descend to the state k = 0 if k£(0) is even, or to the state £ = 1 if k(0) is odd.
In this process there occurs a finite number of parabola-circle transitions, this number
being equal to [£(0)/2], the largest integer not exceeding %£(0)/2.



