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A FREE BOUNDARY VALUE PROBLEM FOR THE
HEAT EQUATION*
BY
W. L. MIRANKER
Bell Telephone Laboratories, Inc.

1. Introduction. In this paper we will prove the existence of a solution of a free
boundary value problem for the heat equation. We will accomplish this by demonstrat-
ing the existence of a solution to a non-linear integro-differential equation.

Let D be thedomain 0 < ¢,0 < z < R(t), R(0) = A, indicated in Fig. 1. The boundary
value problem is

D x = R(t)

Fic. 1.

u, = a’u,,(z, t)eD,

u,(0,8) = —G() G@#) > 0,

u[R(?), ] = T. = constant, )
uxz,0) = Fx) >T. 0<z< A4,

u.[R(),t] = B — CR,(t) B > 0,C > 0 are constants.

Differentiation is denoted by a subscript whether it is a partial derivative of a function
of two variables or an ordinary derivative of a function of one variable.

This problem with A = 0 has been discussed by several authors, see for example
[1, 2, 6], but thus far no existence proof has been established**. The problem describes
the physical phenomena of evaporation, fusion, sublimation, etc. For example with
B = 0, (1) could refer to the following situation. A long metal rod insulated at the sides
has begun to melt at one end (x = 0). The layer of liquid metal is A units deep and
has some initial temperature distribution, F(z). The critical temperature 7. is the melt-
ing point of the metal. At z = 0 heat is applied to the rod at a known rate proportional

*Received March 26, 1957.
**For our proof it is essential that A # 0. See, however, the remark at the end of the existence
proof below.
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to G(t). As the process continues the interface, R(t), between liquid and solid advances
down the rod.

‘This problem is called a free boundary problem since the part R(t) of the boundary
of D is unknown. The additional boundary condition (5) which would over-determine
the problem were R(¢) known compensates for the free boundary.

We set B-= 0 to achieve clarity in our discussion, and we introduce the transfor-
mation

= (4%/a)t,
= (4/a’)t,
a=a-T,,
R’ = (A’/d")R, )
9 =G,
f =F,
D’ = D.
Upon dropping the primes the free boundary value problem then becomes
' Uy = U, , (2, DeD, €))
%,(0,8) = —g(¥) <0, 4
ulR(), ¢] = 0, 6)
u(z, 0) = f(z) 2 0, (6)
. [R(1), t] = —R.(Y). ©)

We require that g(t) and f(z) be continuous and have the following additional proper-
ties: g(¢) is differentiable; f(z) is continuously differentiable for 0 < z < A4; f(z) =
f(— 2);f(z) = 0forz > A4;7.(A) < 0;and f(0) = — g(0). An f(x) with these properties
is

&) =20 — g0 |21+ 904 — 47, [2] <4,

f(z) = 0, otherwise.

2. Method of solution. Our method of solution will be to apply the method of I.
Kolodner [4] and derive a functional equation for R(f). We will show that the existence
of a solution with certain properties of the functional equation implies the existence
of a solution to the free-boundary problem. We will solve the functional equatlon by
the method of contracting maps (Picard iterations).

The method of Kolodner: Let x = p(t) be a continuously differentiable function and
such that p(0) = A. Consider the function u*(z, t) defined as

w=v4+wv+ | 2.1)
where

=~ fo‘ (t = D7 %(7) exp {—[3lx — p(DIt — DT*T} dr,  (2.2)
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w =3 [ (= D) e (—Bl + 6N = ATV @)

+ 77 [ = D7) exp (= lhat = DT dr,

and

P =30 [ 10 e (~B - 9rT) dr. @2.9)

This function is a solution of the heat equation in the domain of Fig. 1 with p(¢)
replacing R(t). We will now calculate the same boundary and initial conditions of u*(z, t)
from 2.1 which are prescribed for u(x, ¢) in the statement of the problem (3)—(7). That
is by computing u? from 2.1 and then letting (z, ) approach the boundaries of the domain
of Fig. 1 we shall obtain the boundary conditions in question for »” and u? .

The arguments used in doing this are lengthy and are based upon well-known formulas
for the integral solutions of the heat equation (see [3]).

The results are

u:(P(t) + 0, t) - u:[P(t) -0, t] = Pt(t); (25)
u;(0+4, t) = —g(9), (2.6)
w(z, 0+) = f’(z,0+) = f(z). 2.7

(2.6) makes use of the evenness of f(z).

(2.6) and (2.7) show that u’(x, t) satisfies the boundary and initial condition (4)
and (6) which are required of u(z, t). (2.5) almost does the same for (7). If in (2.5) we
require that

u(p(t) +0,8) =0 (2.8)
we will have
uz[p(t) — 0, ¢] = —p.(?) (2.9
which is the condition (7) for u. We will see that (2.8) is an integro-differential equation
for p(t). To show that a solution to this integro-differential equation furnishes a solution
to the free boundary problem, we need only apply Green’s formula,

2 f f (W) dz dt = fu dz + 2uu, dt (2.10)
D

to the domain D, of Fig. 2 and to the function u’.
1

Fie. 2.
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Using (2.7) and the fact that f(x) = 0 for z > A and also using (2.8) we have

2 f f W) dedt = 2 f " e, Duila, 1) dt
2 ' (2.11)

~ [ ety = [ @1, do. dt
p(8) 0

If we now let @ — « and observe that (2.1)—(2.4) imply that u’(e, t) and u’(a, t) — 0,
then (2.11) becomes

2f[@raait [ @ wde=—[ @0, da@d @12

If we require that
pe 20 (2.13)

then the right-hand side of (2.12) is not positive and (2.12) shows that u* = 0 for z > p(f)
and all ¢. This in turn implies that w’(p + 0, t) = 0, and since 4’ is continuous along
z = p(t) that u’(p, t) = 0. _

Thus the requirement (2.13) makes p° satisfy the condition (5) for u. We see that
if p(t) is a smooth function for which p(0) = 4 and p, > 0 and such that »2(p() + 0, ?)
= 0, then the function u® solves the boundary value problem (3)-(7). The condition
(2.8) yields from (2.1)-(2.4) the following integro-differential equation for p

b = o0r™ [ o)t = 97" exp (—Bel0(E — 7T dr

=37 [ e = 96 — o)) exp (—BIoD — oA — 7T dr

‘ (2.14)
— 3 fo (Dt = D7 [o()) + p()] exp {—[Fp(&) + p(DNE — D7} dr
+ i j; OO — & exp (~Blo() — 8T dr,
p(0) = A.
We introduce the abbreviation
Pz(t) = F(P, Pt 9, l: A) t) = F(P) (215)
for (2.14).

If we can solve this equation and if its solution p(t), has a non-negative derivative
then p(t) is R(t), the free boundary, and u” is a solution of the boundary value problem.

3. Properties of p%(f). In this section we deduce some properties of the integro-
differential equation (2.14) and of the free boundary which will be of use in our existence
proof.

Lemma 1. If () is a continuously differentiable function for ¢ > 0 then

p0) = lim Flr) = — f.(4). @3.1)
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Proof. The proof proceeds according to the methods of [3]. The first three integrals
on the right in (2.14) tend to zero when ¢ tends to zero while the fourth tends to — f.(4).

Lemma 2. If R,(t) exists and is continuous then R,(tf) > O.

Proof. From (6) and (7) we see that RB,(0) = — f.(A) > 0. Suppose to the contrary
that B,(t) 3 0. Let ¢’ be the smallest positive value of ¢ for which R,(f) = 0. Let D,. be
that part of D where ¢ < ¢'. u, is a solution of the heat equation in D,. . Since g(¢), f.(z),
and R,(t) are continuous and f,(0) = — ¢(0) and — f.(4) = R,(0), u, is continuous on
that part of the boundary of D,. which is not on the line ¢ = ¢’. By the maximum princi-
ple [5], the maximum of u, occurs on this part of the boundary of D,. . Since — ¢ < 0,
f'(x) < 0,and R,(t) < 0for 0 <t < ¢, this maximum must occur at z = R(t'), t = ¢t'.
Thus u, < 0 everywhere in D,. . Thus since u = 0 for x = R(t), we have that « > 0 in
D,. . Then in the closure of D,. , every point on the free boundary is a minimum point
of u. Now at a minimum point of u, the outward drawn derivative in a characteristic
direction must be strictly negative*. That is, u, must be strictly negative along the free
boundary. But at ¢ = ¢/, u, = — R, = 0. This contradiction implies the result.

4. Existence. To demonstrate the existence of a solution to the free boundary
problem (3)-(7), we must show that the integro-differential equation (2.14) or (2.15)
possesses a solution p(t) for which p,(¢f) > 0. To do this we will use the principle of con-
tracting mappings. We will first obtain the existence of a solution p(¢) with p.(tf) > 0
in the small and then using Lemma 2 of Sec. 3, show that this solution exists for all
t>0. .

Existence in the small. Let B be the Banach space of continuously differentiable
functions {p(¢)}, 0 < t < T for some fixed T to be specified. Let the norm be

Il e I =1000) | + lub | o.() |. (4.1)

Thus convergence in B is uniform convergence of the function and its continuous de-
rivative.
Let G be the closed set in B whose elements satisfy the following properties

(8,) P(O) = A:
(d) p0) = —1.(4), (4.2)
(© 0<1<p() <K,

where I < — f,(A) and K > — f,(4) are to be specified.

Now consider the map p! = F(p). We will show that if p, and p, ¢ G, then p/ and
pseGand || pf — pi|| £ C(T) || p1 — p2 ||, where 0 < C(T) < 1 for T sufficiently small.
These statements show that p/ = F(p) is a map of G into G which is continuous and
moreover contracting. Thus by the principle of contracting mappings p; = F(p) has a
fixed point in @. This fixed point is our solution and possesses by [4.2(c)] a positive de-
rivative. We now proceed with the proof.

If p(0) = 4 and p,(0) = — f.(4) then the same is true for p’(0) and p/(0). The first
since p; = F(p) is an integro-differential equation and we may arbitrarily require
p!/(0) = A and the second is the assertion of Lemma 1 of Sec. 3.

In Appendix 1, we show that

” Pl — p3 “ < C(T) ” Pr — P2 ”: P1 chG, (4-3)
*This is an unpublished result due to L. Nirenberg.
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where C(T) = C(T, 1, K, A, g, f) < 1 for T sufficiently small. In Appendix 2 we show
that p! is continuous. In Appendix 3 we show that

I p:(t) - ["' fz(A)] I < Cltl/’) _ ) (4.4)

uniformly for p ¢ G.
Thus we fix T so that C(T) < 1 and

eI < max {| 1= [- 1] |, | K — [= (4] |}

Our map is then into and contracting and a solution p(t) of (2.14) exists up to time T'.
Moreover this solution has a positive derivative.

Existence in the large. The proof of existence in the large proceeds as the above proof.
The Banach space is now B, the set of continuously differentiable functions p(?),
0 <t < T,whereT, > T isto be specified. We use the same norm as in B. G is replaced
by @, , those functions in B, which up to time T are equal to the solution R(t) which we
have just shown to exist. A is replaced by R(T) and — f.(A) by R,(T). !l and K are
replaced by two other numbers [, and K, with0 < I, < R(T) and K, > R.(T).

With this setup the requirements of the principle of contracting mappings are
satisfied here in essentially the same way as above. Thus we produce a T, such that
for T, — T > 0 and sufficiently small, we have existence of R(T) up to time 7, and
moreover B,(f) > 0for 0 < ¢t < T, . We see that we may iterate this procedure and
produce a sequence of T'; , 7 = 1,2, - - - , such that R(t) exists and R,(t) > Ofor¢ < T .
There remains only to show that T'; — « . From the form of the estimates in the appen-
dices and the definitions of the sets G; we see that this will be the case if R,(f) never
vanishes for then we may always extend our solution slightly further. But the vanishing
of R,(?) is ruled out by Lemma 2 of Sec. 3. Thus T; — « and R(t) exists for all time.

Remark. We have mentioned that for our proof it is essential that A + 0. A passage
to the limit as 4 — 0 is suggested to obtain the solution with A = 0. This limit procedure
would be legitimate if for some sequence B*(f) with A tending to zero, the slopes, B (),
have a positive lower bound. For in this event the set of functions R*(f) are equi-con-
tinuously differentiable and a simple compactness argument justifies the passage to the
limit. If the condition (7) is changed to u, [R(t), t] = B — R.(t), B > 0, then an obvious
extension of Lemma 2 yields a positive lower bound for the slopes RZ(f) and in this
case our method yields existence for the case A = 0.

Acknowledgment. The author is grateful to Professor I. Kolodner and to Professor
J. Keller for their assistance in preparing this paper.

Appendix 1. Continuity and contracting of the map p! = F(p). In this appendix we
show that the map p; = F(p) is continuous for p ¢ G is contracting. Let u(f) and v(¢)
be two generic elements in G. Let u{ = F(u) and v; = F(v). We have

lu" =" || = max || Flu) — F() ||
0<tsT

since u'(0) = v’(0) = A.

The computation of the right-hand side of (A1) is divided into four parts corre-
sponding to each of the four integrals occurring in F. The computations for the first
three integrals are so alike that we illustrate the computation involving the third and
fourth integrals only.

(i) THIRD INTEGRAL. We are led to consider
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L+1,=%"" fo ‘ u (Dt — D7) + u(®) — o(t) — o(v)]

-exp {— @) + u(d)(t — 07} dr

+ 47| [ o) = wAIb0 + ol = ™

exp [~ [0 + ot — 27T dr |-
By the law of the mean, we have
1< 4 [ ) +ut) — o) = o) | (= A7 |0 - 22 | dr,
where z is [3[o(t) + o(r)] (¢ — 7)7"?] for some p ¢ B. Thus
LK flu—oll [ (=97~ 28) | a.
Now

2

Then
I LKtx"? ||lu—v]| f (t— ™1 + 2(4 + Kd*(t — D]
A ‘

-exp {—[3(24 + W)t — 97T} dr.

Let
o =324 + )t — 97, 2de = }(24 + lt)'(t — D)™ 4.,
Then
L 4R Ju = o]l @A + 17 | e[l + 8014 + K24 + 19™] do.
24 +1t/212/2

For I, we have

LS lu—vll fo‘ () + o))t — 17 exp {—[FR() + v(D)E — DT} dr

ST llu—oll(A+K) [ (0= 27 exp (~BEA + W) — 97T dr

A+ Kt [®

2A + lt 2A+1t/211/3 ¢ da

=4 u = |

< 4(1)1/2 || u-—v “ (A 4+ KA + lt)—2 exp {—1(24 + lt)2t—l}.

v.g
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ii. FourTH INTEGRAL. For this integral we have

[ 1010 — o0 exp (~1tuth) — £}

I3 + I. = %W—l/zt-:*/z

[ 1060 ~ tiew (~1ud — &P
~ exp (~4u) — £} |
L™ u—oll [ 110 | ew (—Hud) — &P} &

+ h—:/zt-a/z

A A
= 3@ llw—vll [+ [ 110 | exp (—Hul) — &) d
-4 A
= Is + Io . .
where X = \(¥)
Is < 3@)™ [lu — v || (A — ) max | f() |
PPN
I, < 3@)™*(A — N)? max | £,9) | (A1)
ASESA
since f(4) = 0.
Iy < 3@t)™*(\ + A) exp {—3(A + 1t — Nt} max, | 1) |- (A2)
From (A1) and (42) we see that if as ¢ — 0 A({) — A faster than ¢'/* but slower than
t'/? then :
I, + 1, < ||u —v ]| const o(1).

The computation involving I, is similar to the one just conducted and will be omitted.
Appendix 2. Continuous differentiability of an image under F. In this appendix we
show that if p! = F(p), p e G then p} is a continuous function of ¢. The computations
are slight variations of the computations in Appendix 1. Therefore we will carry them
out only for the first integral in F(p).
Let a > 0 and consider

a+At

= ?pla + Ab) /0 g(n)(a + At — )™** exp {—[ip(a + Af)(a + At — ©)7VF} dr

— 77 %p(a) j: g(n)(a — 77" exp {—[}p(a)(a — 07T} dr

a+At

= 77 p(a + Al) j; g(D(a+ At — 7)™ exp {—[}p(a + At)(a + At — 7)1} dr

+ f ")l + A0 + AL — )™ exp {—[3ole + A)(a + AL — D7)

- p@@ — D7 exp {—[3p(@)(@ — D7T}] dr
=I1,4+1,.
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In what follows, we use the fact that p ¢ G implies that p(a), p((a), po(a + A?),
p.(a + At) > 0.
Consider first I, . Let ¢ = p(a + At)/2(a + At — 7)'/%. Then

I, = 4z~ f g dz, = 10(a + AD(AY)~?

< AMx™ f ¢ do, M = max | g(t)|.
=z 0stsT
Since

® Cl A _l' -z
j; e de < 22¢ 220
we have that
I, < 4Mx™"*(A0)"*/p(a + Al).

For I, we have on application of the law of the mean of the differential calculus:

no<ovmant [ {aoe - 07 + 3o - o

-\?(t)(t - T)_llz{.% p‘(t)(t -_— 1.)-1/2 + i p(t)(t - -3/2}]

S

where the quantity in the curly brackets is to be evaluated at some value of ¢ in the
open interval 0 < a < ¢t < a + At. The integrand is thus finite and the integral exists.
Appendix 3. The initial value of p; . In this appendix we show that | p! (f) —
[— f.(4)] | £ Ci(t)"*. We sketch the ideas of the proof since the computations are
variations of those in Appendix 1.
We note first that the first three integrals vanish as ¢ — 0. For the first integral,

7 0(n) [ g = A7 exp (= BoO(E — 97T d,

the singularity at ¢ = = in the exponential [p(0) = A > 0] causes the integrand to be
bounded in the range of integration. This bound depends on the minimum of p(t) ¢ G
and this is bounded below by A 4 IT. Thus the entire integral vanishes with its upper
limit uniformly in G.

For the second integral,

%1—1/2 j: (1) [p(t) — p(9]( — ‘I')-S/2 exp {—[3[po(t) — p(D](t — 1’)-1/2]2} dr,
the term [p(t) — p(7)]/(t — 7) approaches p,(0) = — f.(4) uniformly in G. Thus the

integral tends to zero like ¢'/* uniformly in G.
In the third integral,

LI fo‘ p(De(®) + p(DI(t — D7 exp {—[3[o(8) — (DNt — 7))} dr,
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the singularity in the exponent causes the integral to vanish with its upper limit as in
the first integral.
We have, referring to [3], observed that the fourth integral tends to — f.(4) as¢t— 0.

By examining the proof of this process one may observe that the limit is approached
like ' as t — 0.

BIBLIOGRAPHY

1. G. W. Evans, A nole on the existence of a solution to a problem of Stefan, Quart. Appl. Math. 9, 185-193
(1951)

. G. W. Evans, E. Isaacson, and J. K. L. MacDonald, Stefan-like problems, Quart. Appl. Math., 8,
312-319 (1950) .
E. Goursat, Cours d’'analyse mathematique, 3, Chap. XXIX, 5th ed., Gauthier Villars, Paris, 1942

. 1. I. Kolodner, Free boundary problem for the heat equation with applications to problems of change of
phase, Communs. Pure and Appl. Math,, IX, 1-31 (1956)

. L. Nirenberg, A strong maximum principle for parabolic equations, Communs. Pure Appl. Math.,
V1, 167-177 (1953)

6. L. Rubenstein, On the solution of Stefan’s problem, Izvest. Akad. Nauk,‘USSR, 11, 37-53 (1947)

[ ]

> 9

o



