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1. Introduction. Properties of Gaussian processes must be investigated in many
problems involving the analysis of random noise. Almost as common as the normal
distribution is the Rayleigh distribution which occurs in work on radar, the detection
of signals in the presence of noise, properties of a sine wave plus noise, etc. [1, 2, 3, 4].
It is the purpose of this paper to investigate certain properties of generalized Rayleigh
processes.

We shall use the notation £[a, ^(t)] to indicate that X is a Gaussian process with
mean a and autocorrelation function ^(t). [That is, = ([X(t) — a] \X(t + t) — a)],
where X(t) is a member of J.] A Rayleigh process, 9t, may then be defined as

9J2 = *2[a, *(r)] + tf[b, *(t)], (1.1)

where £ and g) are independent Gaussian processes. Certain classical results that are
associated with 9? may be found in the above quoted references. For example,

(a) The first order probability distribution of 9?:

p(R) = ~ exp [—(it!2 + A2)/2*0]I0(^-) , (1.2)

where \p0 = ^(0), A2 = a2 + b2 and I0 is the Bessel function of the first kind and order
zero with purely imaginary argument.

(b) The second order distribution of 9?:

/P p  RiRo T _ R2 Rl ~| f I \RjR2 \ o\
p{Ri'Ri) ~ na - x2)exp L 2^0(i - x2)_r°Wo(i - x2)/' (L3)

where X = is the normalized autocorrelation function and we have assumed
a = 0 = b.

(c) The correlation function of 9i:

C(r) = vM2E(\) - (1 - X2)K(X)], (1.4)
where K(\) and E(\) are the complete elliptic "integrals of the first and second kind
respectively.

In the present paper we wish to consider generalized Rayleigh processes which we
define as follows: Let , iA(r)], TL2\a2 , ^(r)], • • • , £,v[a.v , &(?)] be N independent
Gaussian processes. Then we define the generalized Rayleigh process, 9i, as

  9? =[£+£+••• + &?]1". (1.5)
♦Received April 8, 1957; revised manuscript received August 2, 1957.
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The general problem is to compute the joint M-dimensional distribution of 9i. We
have not been so fortunate. While it is of course possible to write down the distribution
as a multiple integral, our objective has been to obtain compact usable formulas. Towards
this end we have calculated:

(i) The first order distribution of 9?:

P(R) = fQ (jJ'" exp [-(R2 + ^)/2*0]/(v-s>/a(^) , (1.6)
where A2 = a? + a] + • • • + a£ and I,(x) is the Bessel function of the first kind and
order v with purely imaginary argument.

(ii) The joint probability density of 9?:

P(R., R.) - ^ §®§ (J+)'*"'" »P I - K« + + ^»]l

X £ 2k((N/2l+ ^ItfXvR.RJI^RlUuR,),
jfe-(i\r/2)-i \ iV — o /*-(AT/2)

where

u = Ml + X)' ' 2fo(i - X2)
and (J) is the binomial coefficient,

(iii) The correlation function of 5R:

where

M =
HO) . t(r) i(r + £)

+ £) ^(i) ^(0)

(1.7)

V = o.,/, ^ (1-8)

C(r) rum • ! ■ x) ■ (1-9)
where zF^a, /S, y, z) is the hypergeometric function.

(iv) The three dimensional distribution of 9J:

** •*'« = SS!.rj- - [ -
(1.10)

| M | ' T~ I M | ' (L11)

(1.12)

is the correlation matrix, | M | the determinant of M and Ma the cofactors of M. We
have assumed A = 0, that is, the unbiased case.

Other auxiliary equations, relations and special results will be pointed out as we
develop the above formulas. Note that the results of (a), (b), and (c) are all subsumed
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under (i), (ii), and (iii) above. There are, of course, many other ways in which one
could generalize Rayleigh processes. Some of the methods and results are described in
the references [5, 6, 7,11].

The authors wish to thank the referee for pointing out certain techniques which
resulted in simplifications in the proofs of some results and led them to generalizations
of other theorems.

2. One dimensional biased Rayleigh. Our first problem is to find the fr.f. of R,

R = [X? + X2 + ••• +X2]U\ (2.1)
where X^ , X2 , • • • , XN are independent random variables with the biased Gaussian
distribution

p(X.) = (27r^o) 1/2 exp [-(X, - a.OVa^o], i = 1, 2, • • • , N. (2.2)

Introduce an orthogonal set of coordinates in iV-space with the vector A =
{di , a2 , • • • , a#} as the polar axis. If 6 is the angle between R and A, then the com-
ponents of R in a spherical coordinate system in iV-space are

Ri = R cos 6
at—2

Ra = R sin 0 ]T[ sin <f>k cos <t>a-x , a = 2, 3, • • • , N — 1 (2.3)
k-1

N—2

Rn = R sin 9 J7 sin fa .
k-1

Unit vectors in the directions Xx , X2 , • • • , XN form an orthogonal system in TV-space
which are related to Ri, R?, • • • , RN by an orthogonal transformation. Thus in particular

R2= t-Rl = txl (2.4)
a — 1 a ™ 1

and the Jacobian from R, , R2 , • • • , RN to R, 8, <j>l , • • • , is identical with the
Jacobian from Xx , X2 , • • • , XN to R, d, 4>k . Note that <f>N-2 ranges from 0 to 2-ir while
0,rand fa , • ■ • , 4>N-:t range from 0 to ir.

The fr.f. of R is given by the marginal distribution
f»2r n t /» t

p{R) — I d<f>N-2 / " * ■ I Jp(Xi , • • • , X„) dd d<t>i dfa • • • dtpn-a > (2.5)
Jo Jo Jo

where the Jacobian ./ is

J = R"'1 sin"-2 6 n sin"-2-" . (2.6)
o — l

Since the Xt are independent,

p(X, ,•■•,!,)= ft P(X<) = * exp [ - t (X< - o4) 72*0] • (2.7)
• -1 (27r^o) L <-i J

But

E (*< - = E (*J - 2a<x< + a?) = R2 -2A-R + A2, (2.8)
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where A • R is the inner product of the vectors A and R and

AR — AR cos 0. (2.9)

Hence

(2.10)

2irRN~1 exp [-(#2 + A2)/2Vo] f • »-• „ , ,p(R) =  . ,N/1  / sin 6 exp (+ AR cos 0/$o) dd
(2x^0) Jo

X f[ f sm"~2~a <*>„ <Ua ■
a- 1 JO

Now the first integral is

and the product is

TT r.(a + 1 - 7r<"3)/2
2 ' 2/ r([iv - 1 ]/2)"

Using these results in Eq. (2.10) yields Eq. (1.6).
It is easily seen that as A approaches zero, that is, as ax , ■ ■ ■ , aN approach zero,

p(R) as given by Eq. (1.6) approaches

p(R) =  ffl  exp (~R2/2t0) (2.11)
(2i0)N/2T(N/2)

which is the square root of the chi-squared distribution.
Note that if N is an odd integer, say N = 2n + 3, then Eq. (1.6) may be written

in terms of elementary functions by use of the identity

r M _ (2*r"/2) cT /sjnhjA
I.+tvnW - x./2 d(xy\ x J' C2-12)

3. The two dimensional distribution of SR. We shall establish a formula slightly
more general than that given by Eq. (1.7). The proof is no longer nor more difficult
than a direct derivation of this equation.

Let

R. = [XI + xl + • • • + X2]1/2, Rv = [Yl + Yl + • • • + Yy]1/2,
where the joint 2Ar-dimensional distribution of Xi , • • • , XN , Y, , — , is of the
form Jlf.i v (X, , Yi) and
p{Xt , Y<) = [2* (det M)y/2rx exp {- ^[C11(Xi - a,)2

+ 2cl2(x< - a,)(y< - b,) + cM(r, - by]}.

The covariance matrix is

M = Mil Mi2

M 21 M 22

Var X( Cov (X, , 7.)

Cov (Yi , Xi) Var Y{

and C = || Ca || = M 1 is the inverse matrix.
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We shall show that

p{Rx , R.) = nRxR„e-s/2 ± k(-l)k-'N/2)+1Ik(UlR,)IMv)h(R,Ci2R,)8k , (3.1)
(N/2) —1

where

2(N'2)/2T([N - 2]/2)

(det M)"/2(UlCl2a,2yN-2)/2 '

S = C11(Rl + \ A |2) + C2M +\B\2) + 2C»A-B,

~ I CnA -j- C12B I, co2 = | C22B C12A I,

Sk = Cl-w/^5+i (cos a) = Gegenbauer function.

The quantities A and B are vectors with components \ch , a2 , ■ • • , aN] and (b, , b2 ,
■ ■ ■ , 6.y} respectively while bars denote the magnitude of a vector: for example,

| CnA + C12B I2 = x; (Cna, + C12bi)2.
t"-l

We have let a be the angle between the vectors CxlA + C12B and C22B + Ci2A. Also,
C'n(t), the Gegenbauer function, is the coefficient of /3" in the expansion of (1 — 2 (}t + /32)-'
in ascending powers of /3.

If we let A = B, Mn = M22 = \f/0 , Ml2 = \\f/0 , then Eq. (3.1) reduces to Eq. (1.7).
Note that in this case a = 0 and

r,, . _ T(2p + n)
"w nlT(2v)

If, further, we let A = 0, then p(Rx, Ry) assumes the elegant closed form

P(Rx, R,) = -7rx (fiJ!y)W/2 

r(f)\C+2,/2(2X)w-2>/2(l ~

T fl2+£2 lr / \ (3"2)
'6XP L 2*„(1 - X2)_T <"-2,/2W„(l - X2)/

One application of Eq. (3.2) is to a generalization of the second example in the paper
by Barrett and Lampard [8]. This was pointed out to the authors in a private communi-
cation from Dr. Lampard.

We now turn to the evaluation of the density function of Eq. (3.1). To obtain
p(Rx , Rv) we must evaluate the integral

p(Rx ,RV) = f dY [ dxflp(X{,Y,)
J\Y\-Ry J\x\-R. t-1

= [27r (det M)l/2]~Ne~s/2 [ exp [(C12A + C22B)- Y] dY
J\Y\-R„

• f exp [(CnA + Cl2B - Cl2Y)-X] dX,
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where X and F are the JV-dimensional vectors with components {Xt , X2 , • ■ • ,
and {F, , F2 , ••• , F*} respectively. The notation means: integrate over the
surface of an iV-dimensional sphere of radius Rx .

To evaluate the integral with respect to X we choose the direction of Z = CuA +
C19B — Cl2Y as the polar axis, make an orthogonal transformation and then a general
spherical coordinate transformation as in Sect. 2. We find that

f ez'x dX = (2Wyw/2 | Z rwa)+7(W_a)/a(| Z | Rx), (3.4)
J\X\-R.

where | Z |2 = co2 + C\2R\ — 2Cw(ClxA + Cl2B)-Y. Thus p(Rx , Rv) becomes the
multiple integral

p(Rx , R,) = [2irR;1 det M]-K/te-s/t

r (3-5)
• / exp [(C12A + C„B) •Y]\Z \~(N/2)+11(ff-2U\ Z \ Rx) dY.

J\Y\-R,

Now the vectors CX2A + C22B, CuA + C,2B and F span a three dimensional subspace
of TV-dimensional space. Choose the direction of CUA + C,2B as the z-axis and let the
zx-plane be the plane spanned by CnA + Cl2B and C,2A + C27B. Let a be the angle
between these two vectors, 9 the angle between F and CIXA + C12B, ip the angle between
F and C12A + C22B and <j> the angle between the projection of F on the xj/-plane and the
z-axis. Then

cos ^ = cos a cos 9 + sin a sin 9 cos <t>. (3.6)

Making an orthogonal transformation and then a general spherical coordinate trans-
formation as before we have

2RN~1 ( R \N/2
p(Rx , Rv) = 7rF([Ar 1 2]/2) \2 det, M) e~&n J0 6XP sin a sin 6 C0S ̂ sin"^ d<t>

X f exp (aj2Rv cos a cos 9) \ Z r<A,/2>+7(Ar_2)/2(| % I sin'v~20 dO
J 0

jR.vn( Rjtv y/2( i y-3)/t
\2irJ \det M/ \w2 sin a)

(3.7)
= e~s/2'

X J exp (co2R„ cos a cos 0)/w-3)/2(w2#„ sin a sin 9) sin<JV I)/20

•\Z\-™"I^U\Z\RX) d9,

where | Z \2 = uf + C22R2„ — 2Ci2o)lR,l cos 9. Using the generalized Nemnann addition
theorem [10]

(rx i z i)-(w2,+i/(JV_2)/2(i z\rx) = 2w-2)/2r(^^) ±
\ * / k" (N/2) —1

•(^1)-w/2)+7t(co1KJ(flIC12R„)-w/2,+7t(^C12JR„)C^}+i (cos 9)

and the formula [9]
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/ exp (y cos a cos d)I,-l/2(y sin a sin 6)C'„ (cos 8) sin'+1/2 6 dd
Jo (3.9)

= sin'"1/2aC^ (cos a)I,+n(y)

the formula of Eq. (3.7) reduces to Eq. (3.1).
4. The correlation function of SR. By definition, the correlation function C(r) of 5R

is given by

C(t) = f f RJtvp(R, , Ry) dRx dRv , (4.1)
Jo Jo

where the density function p(Rx , RJ is given by Eq. (3.2) and we recall that
p(Rx , R,) = 0 for Rx , Rv < 0. If we perform the integration,

= 2U1 ~ \2YN+i)/2 £ _^  / N l\

r(f) Sp!r(p+f)
(4.2)

r >K+A)V 2 J/N + l N+ 1 N ,,\
2i\2~' 2 ' 2' x)>

where jFj is the hypergeometric function.
If N is even, say N = 2v, then by use of well known identities [9] involving the

hypergeometric function

_ 2*o(l - XT' d'~l r E(\) _ K(\)
{T) ~ r(f) d(xy-> L(1 - x2)2 2(1 - x2). (4.3)

In particular, if N = 2, v — 1 and C(r) reduces to the formula of Eq. (1.4). Since the
derivatives of the elliptic integrals K{\) and E(X) are linear combinations of K and E
with rational functions of X as coefficients, we note that C(r), for N even, can also be
expressed as a linear combination of K{\) and E(\) with rational functions of X as
coefficients.

If N is odd, say N = 2? + 1, then
2^„(1 — x2)'+(3/2) d' ( 1 2\

The identity

2F,(l, 1, \ , X2) = | [(1 - X2)-,/2 arctan X(1 - X2)"1/2]

implies that in this case C(r) is an elementary function of X.
S. Three dimensional unbiased Rayleigh. We shall derive Eq. (1.10) for a more

general covariance matrix than that given by Eq. (1.12).
Let

R, = (X2, + X%+ ••• + X2A.)l/a, j = 1,2,3
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where the joint 3iV-dimensional distribution of the X{{ is of the form UU P(Xu ,
X2i , X3i) and

p(Xu, X2i , X3.) - [(2tt)3 (det M)}-'/2 exp (-§X;CX,). (5.1)

The covariance matrix is M = || M(i || andC = || Cu1| = M'1 is its inverse. The column
vector X( has components {X,,- , Xu , X3, } and X< is its transpose.

We shall prove by induction on N that

Pn(Ri , R2 , R») = 0 I M rw exp [ —£ i:

X E vMa)W)Ik(y), (5.2)

where

T([N - 2]/2)0 =
(C12C23C31Yn-2)/2T{N/2)

= K-Dk-(^^N/2)N+_k3~ 2)

and a, 0, y are defined in Eq. (1.11).
The proof of Eq. (5.2) for N = 2 follows the pattern used in Sec. 3 and will be omitted.

Of course one could also use the methods of that section to obtain Eq. (5.2) directly
and thus entirely avoid the induction proof. However, the induction proof, in some
respects, is neater and will perhaps suggest additional generalizations.

Let us therefore assume the validity of Eq. (5.2) for N. We shall prove it true for
N + 1- Perhaps the easiest way of doing this is by the method of moment generating
functions. Let u,- = Rf, j = 1, 2, 3 in pN{.R, , R2, R3). Then

o i tit i-"/2 r 3 i -
Vn{u, , u2 , u3) =  exp -J £ CiiUl £ vkIk(a')h(3')hW), (5.3)

* L j-l ' J &-(.N/2)-1

where a' = u{/2C12ul/2, etc. Using the fact that the integral of pN(ui , u2 , u3) over the
whole range is equal to one, that the C,-,- appear only in the exponent in Eq. (5.3) in a
linear fashion, and setting C,-,- = C'u — 2/, we find, after integrating and dropping the
primes that the moment generating function of p,v(wi , u2, u3) is

mN{t, , U , t3) = | C T2 \C -2T I"™, (5.4)
where

^00
T = 0 t2 0

0 0<3

Equation (5.4) is valid if tt < §C,-,- .

Now let

S, = R2 + X2.k+1 = Uj + , j = 1, 2, 3
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where p,v(«i , u2 , u3) is given by Eq. (5.3) and p(XllAr+i , X2,N+, , Xa,K+l) is given by
Eq. (5.1). In order to prove the induction we must show that the moment generating
function of Sx , S2 , S3 is equal to

wilV+iOi . U , Q = , t2 , t3) \ C |I/2 | C - 2T |~1/2.

Let <t>(t, , , t3) be the moment generating function of S, , S2 , S3 . Then
/CO /.oo -co r 3

/ / exp X) t.X'.y+i
-00 J — 00 J — 00 L. im 1 J

<t>{t

■p(X l ,N+l ) X2 ,W+1 > X3,N+l ) dXt ,y+i dX2 .N+V dX3,y+l

= m„(ti ,t2,t3)\c 11/2 \C -2T |"1/s,

which proves the induction hypothesis. An identification of M with the matrix of Eq.
(1.12) establishes Eq. (1.10).

Note the similarity in form of the first order biased distribution, Eq. (1.6), and
the second order unbiased, Eq. (3.2), as well as the similarity of the second order biased,
Eq. (1.7) and the third order unbiased, Eq. (1.10).
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