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—NOTES—

EXPERIMENTS IN THE SMOOTHING OF DATA*
By MARK LOTKIN (Avco Research and Advanced Development Division)

1. Introduction. When using sequences of observed data for the evaluation of certain
desired functions of these data it is frequently necessary to apply some smoothing
process in order to avoid unreasonable results. In such cases the points of paramount
concern are then not only what smoeothing process to choose, but also when to apply
it, The following remarks deal mainly with the ‘“when’ rather than the “how.” In
particular, the question of argument smoothing versus function smoothing is discussed
here, by means of a few simple examples. Both functional values and derivatives are
considered.

While the results obtained may not be of the greatest generality they are, however,
considered sufficiently indicative to be of some practical utility.

2. Definitions and specifications. Let the exact values of a function 4 — f(¢) for a
sequence i; ,¢ = 1,2, --- , m, of the independent variable ¢ be denoted by u, , and let
us assume that there are also available observed values of u, denoted by u} . Of interest .
are the magnitudes of the errors e;(u'), e;(u') = u! — u,, as well as the length || e(u’) || of
the error vector:

lew) I = 3 ). M

i=1

A process which replaces the u! by values u* that differ as little as possible from the
corresponding u/ while diminishing the vector || e(u*) ||, e;(w*) = u* — u, , will be called
a ‘“‘smoothing’’ process. The particular smoothing process to be considered here is based
on a moving least squares polynomial of fixed degree [1]:

pt) = ao+ait + -+ + at’.

The smoothing consists in putting u% = p(t;), U% = (dp/dt). . For the sake of simplicity
we assume that m = 2n + 1 is odd, and that the sequence ¢; is equidistant: ¢, = ¢, +
G— DALE=1,2 -+ ,2n + 1.

Then the usual transformations

T = (t{ - tn+1)/At’
Vimwo1 = U{ , t1=12,---,2n+1,

move the midpoint from £,,, to 7,., = 0, change the ¢, to r; = ¢ — n — 1, and center
the u} about v, . Further, p(f) transforms into a polynomial =(r), so that

p(t) = =(r)) = Zo a,T; ,
=
and, consequently,

Uty = 1"(0) = ap, (2)
*Received March 5, 1957,
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U:+1 = al/At. (3)

The coefficients @, , p = 0, 1, - -+ , r of the least squares polynomial x(r) are obtained
in the well known manner from the system of conditional equations Ca = v, by solving
the associated normal equations Na = w, with N = C"C, w = C™v, where the super-
script T denotes transposition. Thus, if we put

a = aw, o = ay, ‘ 4)
it is seen that, for example, for r = 3, n = 2,
a, = (1/35)(-3, 12, 17, 12, —-3),
a; = (1/12)(+1, —8,0, +8, —1).

Let us now consider the following special smoothing problem. Suppose there are
given two sequences z/ , y/ , of observed values, and a function f; = f(z}, y!). In applying
smoothing procedures to the calculation of f; a number of possibilities present them-
selves: '

1. Function smoothing. Smooth the functional values f/ only.

II. Argument smoothimg. Smooth the arguments z! , y! , into z% , y* then calculate

fr = f=z*,y%.

II1. Argument and function smoothing. Smooth the =, y?, and subsequently calculate

and smooth also the f* .
Since the amount of computational labor involved in each case may vary greatly,
appropriate indications as to which of these possibilities may be the most economical
would be of considerable value. While the experiments described below do not provide
a general answer to this question, they do permit certain interesting conclusions.

3. Outline of procedure. In order to investigate this problem we conducted the
following experiments. First exact mathematical functions z(¢), y(t), /() = f(=(t), y(¢))
were chosen, and their values, as well as those of X (f) = dz/dt, Y (f), F(t) were computed
for a sequence ¢, of equispaced values of ¢.

Next the z,; and y, were subjected to certain well defined, preferably pseudo-random
perturbations which produced corresponding sequences z’, ¥’, f' = f(z', ¥').

In using Method I, Eq. (4) was applied to v = f’, so that the a, produced smoothed
quantities (f')* = g of the function. On the other hand, in using Method II, Eq. (4a)
was applied in succession to ¥ = z’, v = y’, resulting in smoothed arguments z*, y*.
From these there was subsequently calculated f* = f(z*, y*). In applying III, finally,
the smoothing process was imposed also on » = f* now leading to “doubly’’ smoothed
values (f*)* = h of the function.

In computing derivatives by means of a, of Eq. (4) the smoothing of ' led to the set
¢ of derivatives of f/, while the smoothing of f* resulted in quantities ¢ of derivatives of
f*. A comparison of items ¢, ¥ with F then indicated the relative accuracies obtained.

The computation of rates of change of f may obviously be accomplished also in a
number of different ways. Thus, for example, quantities X*, Y* may be obtained first,
by the application’of the process @, to z*, y*, and then a derivative of f calculated by
means of

_9f af
F* = o (@, yMX* + 3 (z*, y*) Y*.
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4. Examples. A. Example 1. We took
z(f) = sin (¢/10),  y(8) = (1/10) exp (¢/10)

flz,y) =z +y,
fort=0,1, ---, 30.

Now z and y were perturbed as follows. Denote the third digit of x by d; . Then
we put

t' = (t/10) + «(—1)"d; , e = .001,
z’ =sin ¢/, y' = (1/10) exp ¢'.
V=2 +y".
The calculations showed that, for 2 < ¢t < 28,
[l e(®) ||* = 915.10°°
[l e(x) ||* = 450.107°, || e(¥") ||* = 520.107°
|| e(f) |I* = 480.107°.

Smoothing of ¢’ by Eq. (4) resulted in || e(t*) ||* = 395.107°, so that the smoothing effect
on t’ itself was very pronounced indeed.

Smoothing of z’, ¥, f’ into sequences z*, y*, f* = z* + y™* had the following effect:
| e(z*) ||* = 170.107°, || e ||* = 130.107°, [| e(f*) |]* = 240.107°.

Since f = z + y is a linear function, g = f*. Further smoothing of f* led to &, and it was
found that || e(R) ||> = 160.107° to be compared with a value of || e(f*) ||* = 229.107°
for the corresponding entries. For the derivatives we found
[l ele) |1* = 326.107°, || e(¥) ||* = 154.107".
Due to the linearity of f, F* = ¢.
B. Ezxample 2. Next, we let
z(l) = (1/2)(#/100°,  y(&) = (1/10)(¢/10)* + (¢/10)
f) =y — =,

fort = 0,1, ---, 30. For the disturbances £, 5 of z, y, respectively, we chose the following
functions:

=z + &, yi=y: + n,
£ = 5("1)'”71.' ’ N = (_l),“"l’n ’

with € = .001, and ¢, , 7;; denoting, respectively, the seventh decimal of sin [(60 4+ 2)
w/180], tan [(50 + 2) »/180), forz = 0, 1,2, --- , 30.
It was seen that

|| e(x”) ||* = 715.107°, [l e(”) ||* = 708.107°, [le(f) || = 1862.107°

between 2 = 2 and 7 = 28.
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Smoothing by Eq. (4), leading to 2*, y* and f* had this effect:
e(*) [|* = 358.107%,  ||e(y®) ||* = 468.10™°, || e(f* ||* = 1428.107°.
For 4 <1 <26, || e(f*) ||* = 938.107% || e(h) ||° = 864.107°. As to derivatives, the

computations led to
[l e(¥) ||> = 437.107°%, || e(o) || = 1351.107°.
C. Example 3. Next we considered the following example:
2) = (L= D/E+D, Y =206+ D/@+D, 1=
=z-y=20¢t—-1/2t+ 1),

to be computed for¢ = 3,4, - - -, 30. The “roughing up” of z, y was done in the following
manner: Let o, , 7, denote the fourth decimal of z, y, respectively. Then we put

o= {x + (=17 for o # 0
z for ¢, =0,

with ¢ = .0005. Similarly for y’. It turned out that for 2/, y’, f' = z'y’, between z = 5
and 7 = 28,

i e(z) ||* = 375.107%, [| e(”) ||> = 525.107%, || e(#) ||? = 714.107%.
Smoothing of 2’ and ¥’ led to 2*, y*, and f*. It was seen that
| e(@*) ||* = 284.107°, || e(y®) ||* = 420.107%,

so that the smoothing did diminish somewhat the length of the error vectors. Further,
| e(f*) ||* = 526.107".

The values of g, obtained by smoothing the functional values f’ showed very close
agreement with those of f*. Further smoothing of f* resulted in values A, for which
| e(h) ||* = 268.10"%, which was to be compared with 305.107° for the corresponding
entries in f*. The derivatives of f, computed in the three different ways described in Sec.
3, led to

[|e(¥) ||* = 286.107°, || e(p) ||> = 540:107°%, || e(F*) ||* = 248.107°.
D. Example 4. Finally, we took
2(8) = (1/10)((t/10) — 3)*((¢/10) + 1)°
y(t) = —(1/10)((/10) — 3)*((t/10) + 1)
) = z(0)/y(®),

fort = — 15, — 14, --- , 4+ 15. A perturbation was introduced into z, y in the following
“sinusoidal”’ manner:

zi=z;+ &, Yi=Yy+m,
¢ = esin (ri/3)/sin (x/3),  #; = esin [(x/3)( + 1)]/sin (x/3),
fori =0,+ 1, + 2, ---,and ¢ = .0005. This resulted in the perturbations

& =0’576107 —€, —€,0, -, 9 =515;O; —€, —¢,0, ---
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forz =0, 1, 2, --- . We found that, for — 13, < 7 < 13,
[le@) |I* = 450.10™°, || e(y") || = 450.107%, || e(f") ||* = 386.10".

In roughing up 2’, y', f' at 2+ = — 10, as well as in smoothing these quantities, the values
had been left unchanged at zero, in order to avoid absurd entries there.
The smoothing again did diminish the error vectors somewhat:

[l ex*) I]* = 383.107°,  |[e(y*) |I” = 879.107%, || e(f*) ||* = 341.107".
On the other hand, {] e(g) ||* = 370.107%. Further, || () ||* = 99.107%, while || e(f*) ||* =
128.107% for the corresponding entries between ¢ = — 11 and 7 = 11. For the derivatives
the following results were obtained:

le(w) || = 118.10°%, |l e(o) ||* = 161.107%, || e(F*) ||* = 132.10°°.

5. Conclusion. In view of the results obtained above the following conclusions, at
least for the examples discussed, seem to be justified:

(a) f* is not significantly better than g;

(b) the improvement h due to the further smoothing of f* may be worthwhile;

() F*isabout as good as ¢, while ¢ is considerably worse than either of the foregoing.
In summary, then, it may be stated that if functional values f alone are desired, possibility
I of Sec. 2 would seem to be adequate. However, if rates of change df/dt also are of
interest, then possibility II should be utilized.
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TRANSVERSE VELOCITIES IN FULLY DEVELOPED FLOWS*
By STEPHEN H. MASLEN

By STEPHEN H. MASLEN (Lewis Flight Propulsion Laboratory, Cleveland, Ohio)

We consider an incompressible flow in a channel whose generators are parallel and
lie in the z-direction. The driving force, either a pressure gradient or some kind of a
body force, is also in the z-direction. If the driving force and the flow velocities are
independent of z, then the flow is said to be fully developed. In such a case, it is usually
assumed that the velocity components normal to the a-direction vanish identically.
However, in some cases it is not clear that this must be true. One such example is that
of a free convective flow where the velocity (z-direction) shows a cellular structure [1],
being sometimes in one direction (up, say) and sometimes in the other (down). It is the
purpose of the present note to show that regardless of these circumstances the transverse
velocity components in a fully developed incompressible flow must vanish everywhere.

Consider a fully developed incompressible flow, where the velocity components
u, v, w, are in the (cartesian) z, y, z directions. If P, p, », and F are pressure, density,
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