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Hence, in fully developed incompressible flows, there can be no transverse velocity
components. The flow is then found from the second of Eqs. (1), dropping the inertia
terms. Of course, for free convective flow (for example, Ref. [2]), an energy equation
must also be included.
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ON AN INEQUALITY OF LIAPOUNOFF*
By AUREL WINTNER {The Johns Hopkins University)

1. Let p{t) be a continuous function which is positive on the ^-interval under con-
sideration. Instead of pit) > 0, it will be sufficient to assume that p(t) 2; 0, provided
that p(t) > 0 holds on a dense <-set. The role of this proviso will be that of excluding
the existence of a function x(t) which satisfies the differential equation

x" + p(t)x = 0 (1)

and is a non-vanishing constant on some ^-interval. If such a solution x(t) of (1) is dis-
regarded [and (1) cannot have two, linearly independent, such solutions in any case],
then, besides the continuity of pit), only the assumption pit) =; 0 will be needed. Only
real-valued solutions xit) will be considered, and the trivial solution, xit) = 0, will be
excluded.

It is clear from (1) that x"it) ^ 0 or x"(i) g 0 at a given t according as xit) < 0
or xit) > 0 at that t. Ifence the graph of x = xit) must turn its concavity toward the
2-axis at every t. Since the clustering of zeros of the derivative x'it) has been excluded,
it follows that the zeros of xit) separate, and are separated by, the zeros of x'it) [provided
that either xit) or x'it) has at least two zeros]. Let a closed ^-interval [c, d] be called a
primitive interval of xit) if neither xit) nor x'it) has any zero in the interior of [c, d], Such
an interval [c. d] will be called a complete primitive interval of xit) if for no e > 0 is
[c — e, d + «] a primitive interval of xit), that is, if xit) ^ 0 and x'it) ^ 0 for c < t < d
but either x(c) = 0 and x'id) = 0 or x'(c) = 0 and xid) — 0. Note that x'ic) ^ 0 and
xid) 0 in the first case, and that a:(c) 0 and x'id) ^ 0 in the second case, since the
simultaneous vanishing of xit) and x'it) leads to the trivial solution.

2. The purpose of this note is to show that, owing to the concept of a primitive
interval, a theorem of Liapounoff (see below) can be extended from his "disconjugate"
case to the general case, as follows:

If pit) is continuous and non-negative on a closed t-interval [a, b\, and if [a, 6] consists
of exactly n primitive intervals of some solution xit) of (1), then

pit) dt > n'/(b — a) (2)f
'Received March 28, 1957.
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(here n is a preassigned positive integer, and n = 1 is allowed; but n = °o is not allowed,
since solutions x(t) which are constant on some J-interval are excluded).

Accordingly, if P is defined by

P = |(5 - a) J* p(t) dt}1" (3)

and if [P] is the greatest integer not exceeding P, then a solution x = x(t) of (1) on
[a, b] cannot consist of more than [P] consecutive stretches on each of which both x(t)
and x'{t) are strictly monotone (nowhere constant). The italicized lemma contains how-
ever somewhat more, since it does not exclude such linear stretches of the graph x = x(t)
as are not parallel to the t-axis. The proof proceeds as follows:

3. First, it is sufficient to prove that (2) must hold when [a, 6] consists of exactly
n complete primitive intervals (rather than of exactly n arbitrary primitive intervals)
of some solution x{t) of (1). In fact, if the value of n is retained but [a, 6] is replaced
by [a*, b*], where a* ^ a < b g b*, then the value of the quotient on the right of (2)
is decreased, whereas the value of the integral on the left of (2) is not decreased, since
p(t) § 0.

Next, it is sufficient to prove (2) for the particular case n = 1 For suppose that
(2) is true for n = 1. Then, if [a, 6] consists of n primitive intervals, and if the latter are
denoted by [ci_l , ck], where c0 = a, cn = b and k = 1, • ■ • , n, then an application of
the case n = 1 of (2) to each of the intervals [c*_! , cK] leads to

f p(t) dt = X f P(t) dt > X 12/dk ,
Jm h" 1 J Ch — i * = 1

where dk = ck — ck-y > 0. Since ^3"-i dk = b — a, this implies (2) for an arbitrary n
if it is ascertained that

n2 / t,dt^ El/d*. (4)
/ t-i Jt-i

But (4) is true, since it merely expresses the fact that the harmonic mean of n positive
numbers dk cannot exceed their arithmetical mean.:

Accordingly, it is sufficient to prove (2) under the following two (simultaneous)
assumptions: n = 1, and [a, 6] is a complete primitive interval of some solution x(t) of
(1). Then, if a = 0 without loss of generality, the assertion (2) reduces to

b f pit) dt > 1, (5)
Jo

and the assumption of (5) is the existence of a solution x(t) for which both x(t) ^ 0
and x'(t) 7* 0 hold on the open interval 0 < t < b and either x(0) — 0 and x'(b) = 0
or a;'(0) = 0 and x(b) = 0. But it will be clear (by interchanging "past" and "future")
that it will be sufficient to prove (5) for the first of these two alternative cases.

In addition, since x(t) ^ 0 for 0 < t < b, and since the solution x(t) can be replaced
by — x(t), it can be assumed that x{t) > 0 for 0 < t g b, while z(0) = 0. Since, as
pointed out above, the graph of x = x(t) always turns its concavity toward the t-axis,
and since x'{t) ^ 0 for 0 g t < b [while x'(b) = 0], it follows that, if 0 < t < b, the

'See, for instance, G. Polya and G. Szego, Aufgaben und Lehrsatze aus der Analysis, vol. 1, 1924, p. 50.



1958] AUREL WINTNER 177

ordinate of the graph of x — x(t) is positive and increasing, while its slope is positive
and non-increasing. Since the slope at t = 0 is x'(0) > 0, and since x'(b) = 0 prevents
that x(t) be linear on the whole of [0, 6], it now follows from x(0) = 0 that x(b) < bx'(0).

On the other hand, since x'(b) = 0, integration of (1) between t = 0 and t = b shows
that

®'(0) = f p(t)x(l) dt. (6)
Jo

But since x(t) increases from a:(0) = 0 to x(b) > 0 on the Grange of (6), and since pit) 0,
the representation (6) of z'(0) implies that, unless pit) vanishes identically,

0 < x'(0) < x{b) f p(t) dt.
Jo

Hence (5) follows from the inequality x(b) < bx'(0), found at the end of the preceding
paragraph.

4. This completes the proof of the italicized assertion. The following fact is a corollary:
If (1), where pit) 2: 0 and a ^ t ^ b, possesses some solution for which x{t) and x'{t)

together do not have more than one zero on the open interval a < t < b, then

f.pit) dt > 4/(6 — a). (7)

In fact, since (7) is the case n = 2 of (2), it is sufficient to ascertain that the assump-
tions of (2) are satisfied by n = 1 or n = 2 according as x{t) and x'(t) together have
no or a single zero on the interval a < t < b. But this is clear for reasons of concavity
(see above), since the whole of fa, 6] is a primitive interval of x{t) in the first case, while
[a, 6] consists of two primitive intervals of x{t) in the second case.

5. It is well-known that a result of Liapounoff2 is substantially equivalent to the
following assertion: If p(t) S: 0, then (7) must hold whenever (1) has on [a, 6] a solution
x(t) satisfying

x(a) = 0, x(b) = 0, x(t) >0 for a < t < b. (8)

It is also known3 that, under the assumption (8), the 4 is the best absolute constant in
(7). A simple proof of the fact that (7) is necessary for (8) was given by Shukovski (a
contemporary of Liapounoff)4 and recently by Borg.5

Clearly, this result is a particular case of the italicized corollary (n = 2) of the
general inequality (2). In fact, the assumption (8) means that the graph of x = x(t)
is a convex arch over [a, &], and so x'(t) has just one zero on [a, b]. But (7) turns out to
hold also for boundary conditions more general than those of (8). For instance, (7)
must hold also if (1) possesses a solution x{t) which satisfies the boundary condition
x'(a) = 0, x'(b) = 0 but has only one zero on [a, 6].

The general result, expressed by (2) for an arbitrary n, suggested itself by Shukovski's

'Actually, Liapounoff considered only the case of an equation (1) having a periodic coefficient
p(l), of period b — a; see A. Liapounoff, Comptes Rendus 123, 1248-1252 (1896).

3E. R. van Kampen and A. Wintner, Amer. J. Math. 59, 270-274 (1937).
4See J. L. Geronimus, Alexander Michailowitsch Ljapunow, Berlin, 1954, pp. 52-53.
'G. Borg, Amer. J. Math. 71, 67-70 (1949).
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and Borg's proof of (7) for the case (8). In fact, even the use of (4) is6 between the lines
of that step in Borg's proof of (7) in Liapounoff's case which leads from [«, c] and [c, 6]
to [a, 6], where c is defined by x(c) = max x(t).

MAXIMUM SPEED IN STEADY SUBSONIC FLOWS*

Br CHIA-SHUN YIH (University of Michigan)

The purpose of this note is to show that the maximum speed in a singularity-free
region of any steady subsonic flow must occur on its boundary, provided the flow is
isentropic and irrotational. The corresponding result for irrotational flows of an in-
compressible fluid is well known.

Since the flow under consideration is irrotational, the square of the speed q is given by

Q2 = V.iV.i (1)

in which ip is the velocity potential, the summation convention is used, and, with Cartesian
coordinates,

dtp

is the jth component of the velocity vector—with the usual minus sign suppressed for
convenience. The equation of continuity is, for steady flow,

{pv.i),i = 0 (2)

in which p is the density. The equations of motion are

(In p),,- = (q2 + 2gx3),i (3)

if x3 is measured in a direction opposite to that of the gravitational acceleration g, and
c is the local speed of sound. Finally, the Bernoulli equation can be written in the form
(with p indicating pressure)

c2 = k 22 - (g2 + 2gx3) (4)
Po ^

in which k is the ratio of the specific heat at constant pressure to that at constant volume,
and the subscripts zero indicate that the quantities involved are taken at some point
of reference, where the gas is at rest and from which x3 is measured.

For a proof, it is sufficient to show that the Laplacian of q" is non-negative. Whereas
this is easily done for irrotational flows of an incompressible fluid, it cannot be readily
established for the flows under discussion. Professors D. Gilbarg (through his publi-
cations) and C. Truesdell (by oral communication) have indicated to the writer that

6G. Borg, Amer. J. Math. 71, 68 (1949); see also P. Hartman and A. Wintner, ibid., p. 209.
*Received April 18, 1957.


