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1. Introduction. Much attention has been given in the literature to the classical
vibration and buckling problems for a plate if the boundary is clamped (see for instance
Weinstein [15], Aronszajn [1], Aronszajn and Donoghue [2], Polya and Szego [11],
Payne [9], and others). Many of the methods which have been proposed for handling
such problems are not practical if the boundaries of the plate are supported, free, or
satisfy mixed conditions. Of course one has a minimum principle for computing upper
bounds for the eigenvalues, but in applications lower bounds are usually more important.

In this report we establish certain "isoperimetric" inequalities for the eigenvalues
in the classical vibration and buckling problems for supported and free plates. These
inequalities involve the geometry of the plate and the eigenvalues of membranes having
the same shape as that of the plate.

It is well known that if the boundary of a supported plate is rectilinear the eigen-
values in the vibration and buckling problems are related to those of the corresponding
fixed membrane problem. If the boundary is not rectilinear this is no longer the case,
and to my knowledge no relationship between the eigenvalues of the supported plate
and those of the membrane is then known. We shall prove in this report that if the
boundary is convex the eigenvalues of the supported plate are never greater than the
corresponding eigenvalues of the fixed membrane of the same shape.

Let us suppose that the plate occupies a region D bounded by a closed curve C in
the xy plane. In comparing the eigenvalues of the plate problem to those of the membrane
problem we assume the latter problem to be defined over the same region. We consider
the following eigenvalue problems:

I. Au + \u = 0 in D, u = 0 on Cl A = —3 + —3)\ dx dy )

II. Av + y.v = 0 in D, ^ = 0 on C
dv

III. A2w> + AA w = 0 in D, w = 0, M{w) = 0 on C

IV. AV - fiV = 0 in D, <p = 0, M(<p) = 0 on C
V. A 2w + TAw = 0 in D, M(w) = 0, V(w) = 0 on C

VI. A2<p — y2(p = 0 in D, M(<p) = 0, V(<p) — 0 on C

where v denotes the outward normal on C and M {\p) and V(\p) are defined as follows:
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< \MM - „A* + (, -„)[A(a)I +1 (a)I], 0<,
/djA to _ ^ /d^A dy1

Lsv V dy) dv dv \ dx/ dv\
As is well known, I and II characterize the fixed and free membrane problems

respectively. The buckling problem and vibration problem for a supported plate are
given by III and IV, while V and VI are the corresponding problems for a free plate.

In each of these problems it is well known that non-trivial solutions exist if and
only if the constant X, m, A, ft, r and y take on certain discrete non-negative values.
We order these eigenvalues as

X„ > K , n > m, (2)

the other eigenvalue being similarly ordered. We denote the eigenfunction corresponding
to X„ by un , etc.

In this paper we establish the following isoperimetric inequalities for C convex:

A„ < X„ , (3)

On < K , (4)

r„ < Un , (5)

Tn < • (6)

For arbitrary C we prove further that

A„ > (1 - <r)M2 + <rX„ , (7)

An > , (8)

A„ > r„ + 3 > (1 <r)/i| (n + 3)/2l ) (9)

fl„2 > X„Aj , (10)

7»+2 > M»r4 > (1 — <r)ju2Mn , (11)

where the symbol | (n + 3)/2 | is used to denote the largest integer contained in the
quantity (n + 3)/2.

We first define

W) - (1 - "'Wl*) + °(^)] + ' //(aW" dA- <I2)
The eigenvalues in each of the plate problems which we consider are defined as the
minimum value assumed by 21(^) for a certain class of continuously differentiable
functions ■•p. In (12) D denotes the Dirichlet integral, i.e.

D(if) = JJ | grad i |2 dA.
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2. Buckling problem for the plate. A. Supported boundary. The eigenvalues A„ in
problem III are defined by the following minimum principle:

A„ = min. Sl(^) (13)
among all continuously differentiable functions which vanish on C and satisfy the-
relations

n,, ff \d\j/ dWj d\p dWi~]dA = 0, i = 1,2, ••• ,n - 1, (14)

and
W) = 1. (15)

We note that if C is convex its radius of curvature p is everywhere positive. Likewise
if we denote by r the distance from an arbitrary origin inside a convex curve C then the
quantity h = r{dr/dv) is positive at every point on C.

We assume first that the region is convex and choose for \j/,

i = X a{u{ , (16)
»-l

where the functions u{ are the eigenfunctions of the corresponding fixed membrane
problem (I) and the a,- are so determined as to satisfy (14) and (15). Insertion of (16)
in (13) gives after an application of Green's formula,

A. < ± aXDM + ̂  f I [( ± a, I*)' + ( ± a, f*)'] A. (17)
C

We have used the fact that

D(Ui , Uj) = 0, i j. (18)

Now the boundary integral in (17) may be rewritten as

i 5 [(£- SO' + (S - If)'] * -i £ ■- f S °<4»< *

c

tJ-* dlli
to"

^ dUi
fx dy.

(19)

where d/ds denotes differentiation along the curve C. The first boundary integral on
the right vanishes if the region is convex since the w, satisfy I. We now make use of the
fact that on C

d\p dUi dx dUi dy .
air-£* S"'¥"S'0' (20)

and find finally that

/si(§-&)'+(s-%)']"--nit,"#)'**0- (2»
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Thus from (17)

A. < E aXD(Ui) < X„ £ a'DM = X„ , (22)
»' = 1 1 = 1

the last step following from the normalization (15). This establishes inequality (3).
Note that we may obtain a better inequality for the first eigenvalue A, , for in this case
we have only one eigenfunction in (16). The quantity on the right hand side of (21)
can then be approximated. Let us suppose that the function is normalized according to
(15) (then a, = 1, a, = 0, i > 1). According to Rellich's identity [12],

1 = X. ff u\ dA = | j> h(^j ds, (23)
D C

where h — r{dr/dv) and the origin is arbitrary. We choose the origin so as to minimize
the quantity hm„ on C and denote by h° the resulting /im„ . We obtain then the in-
equality,

Ai < Xi — 2l1o ~ a) (24)
ft Pmax

As was previously mentioned the equality sign holds in (22) and (24) if the boundary
C is rectilinear (pmai = oo). It is easily seen from (21) that this is the only case in which
equality exists.

Inequality (7) for a general plate (not necessarily convex) follows directly from the
maximum-minimum principle for An (see Courant-Hilbert [3]) or from the second
monotony principle (see Aronszajn and Donoghue [2]). One need merely observe that
in problem II, mi = 0 (v, = constant) and /u2 is defined as

M2 = min. , (25)

ffx'dA
D

for continuous functions x which satisfy the condition

JJ" X dA — 0. (26)
D

It follows then that, since the functions in (13) vanish on C,

<27>
D D

Hence from (25)

*69it)**II{%)'**■ <*»
D D

Inequality (7) then follows directly from the maximum-minimum principle.
Inequality (8) is established by making use of the minimum principle for X„ , i.e.
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X„ = min. D(x) (29)

// x' dA
D

for continuous functions x which vanish on C and satisfy the condition

J J xUi dA = 0, t = 1, 2, • • • , » — 1. (30)
D

By Green's theorem and Schwarz's inequality we have

ff (Ax)2 dA
D(x)

//*' o, DW
(31)

Thus,

W) //[&§-(*£;)>
x-£^Tx^-|i + 2<1-')" DM 

ff (Ax)2 dA
<m + (±^AJl  (32)
" D(x) + 2 D(x) {d2)

«(x)
D(x)'s b+(V)'+(M'+-+(V)'+ •■•]

Thus we obtain for arbitrary x

X <_2_m
" - 1 + <T D(x) ( )

We now choose x to be a linear combination of the first n eigenfunctions w, of problem
III with the constants chosen to satisfy (30) and inequality (8) follows immediately.

B. Free boundary. The eigenvalues r„ of problem V are defined by Eqs. (13), (14),
and (15). However, we now remove the restriction that \p vanish on the boundary. It
is clear that the first three eigenvalues will be zero. The corresponding eigenfunctions are

Wt = Cj , w2 = C2 + C3x, w3 = Ct + C5x + Cf,y, (34)

where the C, are constants.
We assume first that the plate is convex, and choose instead of (16)

n

i = dM . (35)
» = 1

Equation (17) follows with w, replaced by v< as does (19). We have instead of (20),
since dvjdv = 0 on C,

dyf/ _ V dVi dx -i- V dVi dy n rm-- = 2-t a' 5 r 2-, T" = (36)dv ~1 dx dv fTx dy dv v



116 L. E. PAYNE [Vol. XVI, No. 2

Instead of (21) we have in this case

ii[(£<*£)' + (?-1)']* - -i\(S■-1)°'* * o. (37)
C

Thus from (17)

r„ < E «?,»,/>(»<) < Mn £ «?£(»<) = /«. • (38)

This proves inequality (5).
For the general plate (not necessarily convex) we shall now establish (9). The left

hand side of this inequality follows from the minimum principle for rn+3 mentioned
previously in this section. (The eigenvalues r„ are defined by the right hand side of (13)
under conditions (14) and (15). However, the trial functions \p are not required to vanish
on C). We note that any function which vanishes on C is orthogonal in Dirichlet norm
to any harmonic function. (This is an immediate consequence of Green's identity).
Hence, if we choose for \p functions which vanish on C, condition (14) is automatically
satisfied for the first three eigenfunctions (34). In particular let

* = Z , (39)
t-1

where the upper index s indicates that we are using the eigenvalues of the supported
plate. The 6, are chosen to satisfy (14) and (15). Then

rn+3 < »(*) = Z 6*:-) = E KAtDW < An. (40)
i «1 i -1

In order to establish the right hand side of (9) we recall the definition for , i.e.

= min. (41)
jjx'dA

for continuous functions x which satisfy the condition

JJ xVidA = 0, i = 1, 2, • • • , n - 1. (42)
D

We choose for x two functions

V „ V fit dW< (A Q\Xl= (43)

with the /?,- chosen to satisfy condition (42). The w{ are the eigenfunctions of problem
V. Then from (41)

•P(xi) + DiXi)
D^ + D^+T=-Jl[t + w]dA

i*n < <

ff Ixl + xl] dA JJ Ixf + xl] dA (44)
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But since 21 (w, , w,) = D{w, , w{) = 0 for i j this inequality reduces to

„ «[P(t) + DW) + T=-Jf dA] ,
< E  2n 2  < 7-^— r2n . (45)

£ 02<D(Wi) 1
t- 2

We have then the inequality

r2„ > (l - , (46)

or equivalently

I\i + 3 > (1 — <r)n I (n + 3)/21 (47)

which was the relationship to be established.
3. Vibration problem for the plate. A. Supported, boundary. The minimum principle

for determining the eigenvalues Q* of problem IV is the following

= min. Sl(^) (48)

for continuously differentiate functions \p which vanish on C and satisfy the conditions

ff dA = 0, t - 1, 2, •••,»- 1, (49)
D

and

Jf tfdA = 1. (50)
D

Let us assume for the moment that C is convex. Proceeding exactly as we did in
establishing (3) we prove with little difficulty that

< X* • (51)

Thus if we take to be positive (4) follows immediately. One also obtains the improved
bound for £l\ ,

a; s x'[x' - Hi?]- (52)

We return again to the case of a general curve C Inequality (10) follows directly
from the minimum principle for A„ , (29) and (30). We choose for \p

n

i = £ Ci<Pi » (53)
t-1

where the c, are chosen to satisfy (30). (We use the v?, of problem IV.) Then

f[ V, dA
< _m_ m < ™—" l < a:/Al, (54)
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which is (10). In a similar way we could have obtained the inequality,

fin > A„_mXm+i , 0 '< m < n — 1. (55)

From (55) and (8) we obtain at once

fin > (1 2 ^ , 0 < m < n - 1. (56)

B. Free boundary. We turn now to problem VI. The minimum principle for yl is given
by

y1 = min. SI(i) (57)
among all continuously differentiable functions \p which satisfy conditions (49) and
(50). As in the case of the buckling problem for the free plate, the first three eigenvalues
are zero with corresponding eigenfunctions

<Pi — ki ,

<p2 = A;2 + k3x, (58)

<p3 = + kbx + key, ki = constant.

For convex C the proof of inequality (6) follows along the same lines as the proof of (5).
Hence we shall not repeat the details of the proof.

For general C the first half of inequality (11) is proved in the same manner as was
(10). The second half then follows from (9). To prove (11) we make use of the minimum
principle for given by (41) and (42). We may rewrite (41) as

^ 2l(x) D(x)^  > (59)II*
and choose for x

n + 2

X = sifi , (60)
»-l

where the <p{ are the eigenvalues of problem VI. The <5, are chosen to satisfy (42), and
in addition the conditions

D(w2 , x) = D(w3 , x) = 0, D(x) = 1, (61)

where w2 and w3 are given by (34). [The condition D(Wi , x) = 0 is satisfied identically.]
Then

n + 2 /» <i

Z) s<7i J J w2i
 D

n + 2 n>

E « // »:

dA

Mn <  77~  jr (62)
dA r4

< 7.+2/r4
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which is the first half of (11). In a similar way we establish the inequality

7»+3 > M2+mrn_m+3 , 0 < m < n — 1. (63)

With the help of (49) this inequality gives

7» + 3 > (1 ~ ^)M2 + mMl<n-m + 3)/2| , 0 < OT < » — 1 . (64)

The right hand side is a maximum if m = n — 1. We obtain then

7» + 3 > (1 — 2M»+1 • (65)

4. Concluding remarks. The eigenvalues of the vibration and buckling problems
for a supported or free plate have been bounded in terms of the eigenvalues of the
corresponding fixed or free membrane problems. If these cannot be determined ex-
plicitly they are still more easily bounded than the eigenvalues of the plate problems
which we have considered. For instance the eigenvalues of the fixed membrane are
monotone with region while those in the plate problems which we have considered are
not. Under certain symmetry conditions one can obtain a lower bound for the first
non-zero eigenvalue in the free membrane problem which involves only the geometry
of the region (see Payne and Weinberger [10]). We have also the isoperimetric inequalities

X, j 2.4048,

M2<^, 1.8412,

(66)

where A is the area of D. The first inequality was proved independently by G. Faber
[4], and E. Krahn [7], and the second was formulated by Kornhauser and Stakgold [6],
proved under certain restrictive conditions by G. Szego [13] and established for a general
region by Weinberger [14]. From (66), (8) and (56) we have the inequalities

(67)

We note further that inequalities (3) to (10) hold in any number of dimensions.
The right hand side of (9) must merely be changed to read

r.y<n-l)+2 > (1 i (68)

where N is the number of dimensions.
In N dimensions inequality (11) is replaced by

7»+N > MnlV+a > (1 — <r)n2nn . (69)

In case of a vibrating free plate in the shape of a square, Nakata and Fujita [8]
have applied the method of Kato [5] and after considerable computational work have
obtained both upper and lower bounds for the first non-zero eigenvalue. For a = 0.225
and a square of side 2 they obtained the bounds

3.418 < 74 < 3.554. (70)

However, their method is not completely rigorous. If we make use of the symmetry of
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the region1 we obtain the bounds

3.06 < 74 < 4.94. (71)

The upper bound is, of course, not good and a close bound can easily be obtained anyway
by the usual Rayleigh-Ritz procedure. However, one finds immediately, with no com-
putational work whatsoever, the lower bound given in (71) which in application may
be quite good enough.

Bibliography

1. N. Aronszajn, Studies in eigenvalue problems, Tech. Rep. 3, Oklahoma A. and M. College (1951)
2. N. Aronszajn and W. Donoghue, Studies in eigenvalue problems, Tech. Rep. 12, University of Kansas

(1954)
3. R. Courant and D. Hilbert, Methoden der malhematischen Physik, vol. 1, Berlin, 1931
4. G. Faber, Beweis, dass unter alien homogenen Membranen von gleicher Fldche und gleicher Spannung

die kreisfiirmige den tiefsten Grundton gibt, Sitz. ber. Bayr. Akad, Wiss., 169 (1923)
5. T. Kato, On some approximation methods concerning the operator T*T, Math. Ann. 126, 253 (1953)
6. E. T. Kornhauser and T. Stakgold, A variational theorem for V1" + Xm = 0 and its applications,

J. Math. Phys. 31, 45 (1952)
7. E. Krahn, Vber eine von Rayleigh formulierte Minimaleigenschajt des Kreises, Math. Ann. 94, 97

(1924)
8. Y. Nakata and H. Fujita, On upper and lower bounds of the eigenvalues of a free plate, J. Phys. Soc.

Japan, 10, 823 (1955)
9. L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rati. Mech. Anal. 4, 517 (1955)

10. L. E. Payne and H. F. Weinberger, Two inequalities for eigenvalues of membranes, Tech. Note BN-65,
Univ. of Maryland (1955)

11. G. Polya and G. Szego, Isoperimetric inequalities in mathematical physics, Ann. Math. Studies 27,
Princeton (1951)

12. F. Rellich, Darstellung der Eigenwerte von Au + hu durch ein Randintegral, Math. Z. 46, 635 (1940)
13. G. Szego, Inequalities for certain eigenvalues of a membrane of given area, J. Rati. Mech. Anal. 3,

343 (1954)
14. H. F. Weinberger, An isoperimetric inequality for the free membrane problem, J. Rati. Mech. Anal.

5, 633 (1956)
15. A. Weinstein, litude des spectres des Equations aux dirivees parlielles de la thiorie des plaques ilasli-

ques, Memorial de Sciences Math. 88, Paris (1937)

'In the case of a square plate it can be easily shown that inequality (62) may be replaced by:
74* > wr«.


