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A DERIVATION OF THE BASIC EQUATIONS FOR HYDRODYNAMIC
LUBRICATION WITH A FLUID HAVING CONSTANT PROPERTIES*

BY

H. G. ELROD**
Consultant, The Franklin Institute

Abstract. In this paper small parameter techniques are used to derive Reynolds'
lubrication equations, and refinements thereof, from the full Navier-Stokes equation.
An effort has been made to retain rigor in the development comparable to that used in
present-day boundary-layer developments.

To derive the differential equations for flow in a curved film of arbitrary thickness
requires the use of general tensor analysis. The mathematical manipulations are some-
what involved, but one of the results—a refined Reynolds equation—can be simply
written for a journal or slipper bearing as follows:

I {4 -1) 1}+i M'+!)!}=** s M1 - &)}•
Here:

D = shaft diameter (infinite for a slipper bearing)
h = film thickness
p = fluid pressure
U = shaft surface velocity
x = distance around shaft in direction of rotation
z = distance parallel to shaft axis
M = fluid viscosity

The error of the above differential equation is of the order of (ln/L)2, where L is the film
length in the direction x.

1. Introduction. The purpose of this paper is to provide a derivation of the basic
equations for hydrodynamic lubrication with a fluid having constant properties. It
is expected that analytical techniques similar to those employed here can be adapted
to the development of equations applicable to fluids having pressure- and temperature-
dependent properties.

The derivation given here applies directly to the geometries of both journal and
slipper bearings. No difficulties are anticipated in the application of similar analysis to
other geometries, such as those which can occur in thrust bearings, but the writer wished
to avoid becoming lost in too much generality.

In the literature, a close approach to the present work appears in an article by
Wannier [1]. The present work extends that of Wannier in three respects. First, the
complete Navier-Stokes equations are used as a starting-point (rather than "Stokes"
equations). Second, the mean film surface can have finite curvature. Third, the present
approximation procedure is susceptible to improvement without regression.
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Figure 1 shows the physical situation to be analyzed. A shaft rotates within a bearing,
which, for the purposes of analysis, is only partial. A circular shaft of radius, R, rotates
at angular velocity, u. The small film thickness, h, between this shaft and the bearing
surface can be an arbitrary function of position. It is completely filled with a fluid
possessing constant properties, free to flow in and out of the film where it is exposed
to ambient conditions at the edge of the bearing.

Fig. 1—Schematic diagram of bearing

The problem to be posed here is that of predicting the velocity and pressure dis-
tributions within the film. This problem can perhaps best be stated in terms of the
variables:

t1 = — • t2 = y~ • t3 — ^ r ii
L ' L ' * ~ hit1,?) ' (1,1)

where L is a characteristic dimension of the bearing. The position of a fluid particle is
known when its coordinates £*, |2 and f are specified. Likewise, its motion is given by the
time derivatives of these quantities, u\ Thus:

(1.2)

Then it is convenient to define the following set of dimensionless "velocities"

LV
(1-3)
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Corresponding to Fig. 1 we note that:

K = 0; £3 = -1, i = 1, 2, 3.

< = *4 = 0, i = 2, 3; i? = 0.

We can presume that the local film thickness, h, is given by:

h = ha exp {<p(£, $2)}, (1.4)

where the function cp and its derivatives are 0(1). The value of h0 sets the magnitude,
so to speak, of the film thickness throughout the bearing

Finally, we introduce a dimensionless "pressure" % such that

(1.5)"(iJ
The value of x is specified around the periphery of the film, and may there generally
be taken as zero.

The significant feature of lubrication hydrodynamics is the smallness of the dimension-
less parameter

e ^ h0/L. (1.6)

Now it is possible to imagine at least two experimental sequences in which this parameter
becomes progressively smaller, while at the same time the boundary conditions on the

and 7r remain invariant. In the first of these sequences, L is progressively increased
with h0 constant, while R is varied proportionately to L and o> is varied as L~2. Thus

remains constant on the shaft, and t on the bearing periphery is unaltered if the
external pressure distribution is unaltered. In the second sequence, h0 is progressively
reduced and fluids of equal kinematic viscosity "v" are employed which have, neverthe-
less, progressively lower densities; i.e., p ~ h%. (In the event that the peripheral pressure
is constant, as is usual, then this constant pressure can be taken as datum, and the
fluid density need not be changed in this second sequence.) Again, the boundary con-
ditions on the and x are invariant. The existence of such hypothetical experimental
sequences is not necessary to the use of (h0/L) as a small parameter in a mathematical
expansion, but it does tend to assure that there will be a range of experimental conditions
for which the early terms of the expansion will provide an adequate description of the
observed variables.

Although the boundary conditions of the problem can be made independent of e,
as shown above, the differential equations for the and t in terms of £l, £2, |3, do contain
e in such a manner that a non-singular perturbation problem can be formulated. Thus,
we hypothesize that we can represent the dependent variables as follows:

K = W, *3) + eW, f) + e2 W, ?, t) etc.
x = PoOi1, f, f) + eP^1, e, f) + t, I3)- (1-7)

When these series are substituted into the complete Navier-Stokes equations, and the
coefficients of the various powers of « are equated to zero, a sequence of differential
equations is generated for the V\ and Pk . The lowest order equations are the original
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equations of Reynolds. Successively better solutions can be found by solving the higher-
order differential equations in a manner explicitly indicated in this paper. If the series
in e [Eq. (1.7)] converge, true solutions of the Navier-Stokes equation should result.

2. The metric tensor. The simplest manner of obtaining the differential equations
for the and ir is through the use of tensor calculus. Hence we first compute
the covariant components of the metric tensor. They are given by:

(2.1)<-i d£ d£

The intermediate algebraic details required to obtain the gap are recorded in the Appendix.
The resulting matrix is given below

(, _ t3 *Y I (? «*Y (£Y MM t?hLd±
\ ? RJ \L d£) XL; df1 d? S L2 d!jl

fl)2 dh^dh i , (? t3 A §h.
\L; d?d? + \L d?) ? L2 d|2

if <x0   ri  
jJ. — v-Ta/3 —

s h_ dh^ 3 A dh_
L*d? 1 T2df

The determinant of the matrix | gaj3 | is:

(2.2)

g=\g*»\ = (1 -*3|)W (2.3)

The contravariant components of the metric tensor are found from the formula

gaf> — ^-Cofactor of gfa in g. (2.4)

As shown in the Appendix, the contravariant array is as follows

3 dlnh
1 * a?1  o  —

= G" =

MD' MS)'
3 dlnh

3 dlnh / 3 dlnhY
* d? 3 dlnh L? X dg1 ) ( 3 dlnhY~?W t* + / ZhY + (r ^)

Ml)2

(2.5)

Finally, the Euclidean Christoffel symbols are required. They are given by the
formula:

(tS t2   i,,j(rf . dgaa dgQ,p\r.»({,«,£) - M + ^-—J (2.6)
or:

rU*\12, S3) = + ^ - ~r)- (2.7)
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Explicit expressions for the r*0)9 will not be given; rather we shall determine their orders-
of-magnitude in terms of «.

We first note that all G*" are 0(e°), with the exception of G33, which is 0(e-2). Thus:

Ga" = 0{exp (-25," 5? In «)). (2.8)

Next we note that all derivatives of the GaS are 0(e2), with the exception of the derivatives
of Gn , which are 0(e). Thus:

r)C
= 0{exp (2 - S\ S'p) In e)}. (2.9)

Substituting Eqs. (2.8) and (2.9) into Eq. (2.7), we obtain:

rl, = 0{exp [(-2 Si S'3 + 2 - «J) In «]}
+ 0{exp [(-2 83 SI + 2 - Si Si) In e]}
+ 0{exp [(-2 8iSl + 2 - 61. «J) In e]} cr « 1,2, 3 (2.10)

By picking the lowest power of e for each r"a„ , we reach the following conclusions.

i 9* 3, a 1, 0 1: = 0(e2)

i 7* 3, a = 1, or (3=1, or a = 0 = 1: = 0(e)

i — 3, a 7* I, or 0=^1: = 0(e°)

i = 3, a = 0 = 1: rl„ = 0(e-1).
3. Reduction of the momentum and mass continuity equations. The Navier-Stokes

equations for a fluid having constant properties are [2]:

(2.11)

0 = vg" d u 1 1 pi pi du /aT,,, ; T ,■ T \ 1
r , + r„ + r,a , -Taf— + \-J- + Trl,T,a - T,rTa,)u JLardf "ar ar ar va*

du_
d£" " ' P" d£

(3.1)
a(du< , ,• „\ 1 dpu H T„au I — g -£~-

\dta / p dta

In terms of the dimensionless velocities and the dimensionless pressure, x, this equa-
tion becomes:

n   /^°^r d U I pi 1 pi dUg „ du^
°~G Lardt+ "ar + v

+ + r;„r;a - r;rr'Q,)<]

*\M" */ df

(3.2)

, ar / ar
With i 9^ 3, we retain in Eq. (3.2) those terms of lowest power in e; i.e., of 0(e~2)

and 0(e-1). The resulting, simplified equation is:

n _ _f7np3 ^u* 1 r»33f au* I np> &u* 1 p3 du* . ar13 ,~|
0 - (Z Tn dj? + G ^)2 + 2I\3 + r33 d£ + u* j

(3.3)
-€~2(J*a .

ar
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Explicit expressions for the GaP are given by (2.5). The required r^7 in Eq. (3.3) are
given with sufficient accuracy as:

r;3 = W1 ^ = iGa(-2 |) = —G'11 = o(«), (3.4)

= 0(e2) because ^4 = 0. (3.5)d£ a?
p3 _ 2 dG. = 0(e2) because = 0 (3.6)de ar

df
By virtue of these relations, Eq. (3.3) becomes:

n ^ nfyil h H dU% J —2 y>il i /-vi2 i /^fi3 dlf \
0 - W Lo^)5 ~ 20 RW~RWi~e L W+ W+ a?J' ( }

With i = 3, we again seek the two lowest powers of e in Eq. (3.2). It is readily found
that, correct in terms of 0(e~4) and 0(€~3),

% = 0. (3.9)

Now we examine the mass-continuity equation. In tensor form, it can be written as:

—Ag'w) = o, (3.io)
d£

where, of course,

g = (l -f|)2L4fe2. (3.11)

Since u® vanishes at £3 = 0 and £3 = — 1, we can integrate Eq. (3.10) to get:

w f (' -l>< *+w f (> - f !>< *-*■ <3-i2)
This last equation is exact.

4. Reynolds equation with first correction terms. In this section we shall obtain
a Reynolds equation valid to 0(h„/L). From Eqs. (3.8) we obtain:

d2u
aft3)

a^-j. ^   ,■111 fh \ ()lT
y # a$» ~ ft a*3 ~ ^ Wo/ a^1' (4.1)

d2w| h du* _ « = G22(J-)2 ̂ , (4.2)

where:

a(f) ftar U„/ af

1 , . „,a h

(T7f = I+ s+"' (4'3)
G22 = 1. (4.4)
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Retention of terms through 0(e) in Eqs. (4.1) and (4.2) gives:

HISMi+2£,l)(y't <4-5)32 1u*
din Raf V ' ' R/XhJ

and

d2ul h du\ -(s)> <«>d(t) Rd? \hj d£
Because, to the degree of approximation presently being retained, it is independent

of f, Eqs. (4.5) and (4.6) can be integrated with respect to £3. For u* we obtain:

++?}+«■>• t ] ■

where

_ (h V dr
Ql ~ Uo/ d?

For ul we obtain:
and terms of 0(e2) and higher have been neglected.

lit

where

?2 (£)

2 dir

df
The "velocities" u* and from the above Eqs. (4.7) and (4.8) can now be sub-

stituted into Eq. (3.12) and the definite integrations called for in this last equation can
be carried out explicitly. When terms through 0(e) are retained, the result is:

-- (h ^ — (r —^ LRw~\
W vJLW V2r) w ~ v1 rJ ~~r j

(4.9)
= 0.

In more conventional variables, this equation becomes:

i{4-s)|} + 5H1 +1)1}-WS{"(' - 35)}'
where D is the shaft diameter, x is distance around the shaft, and z is distance along its
axis.

In all usual applications, h/D « 1, so that Eq. (4.10) is essentially Reynolds' Lubri-
cation Equation with correction terms. It has been derived in this paper from the full
Navier-Stokes equation by a systematic procedure employing e = h0/L as a small
parameter. Now:
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A
D

-E*5- W' <4-"'
When the characteristic length L is maintained constant and D is taken progressively
larger, h/D —> 0, and the equation for a plane slipper bearing is obtained. It is seen that
Reynolds' equation for a plane slipper bearing has an error of 0(e2), rather than 0(e).

5. Development of solutions to the Navier-Stokes equations. The general approxi-
mation procedure, of which we have just examined the first few steps, will now be
outlined.

Substitution of the series 1.7 into Eq. (3.8) gives the following sets of equations
which result from equating to zero the coefficients of the successive powers of "e"

m- (I)' w(5-2>
IY* = ,?,?). (5.3)

In these equations, the functions Hk_, , 7t_x and Kk_, are known functions of space
involving velocity and pressure functions of lower order obtained earlier in the approxi-
mation procedure. For example, IIk-i (f\ t) would involve

Ul-r , UU , Ul-1 ; UU , UU , etc.
Pk2 , etc.

and their derivatives.
Now from Eq. (5.3) we have:

p&, e, t) = p& ,e,o) + £ ^ dt. (5.4)
Or:

+ (5.5)

In this equation, and hereafter, we shall abbreviate

o) - pk(k\ t, o).
Substitution of Eq. (5.5) into Eq. (5.1) gives:

d Uk _ (h\ dPk(0) „ 2 3. . .
ad3)2 - \hj df (5-6)

This last equation can be integrated twice with respect to £3. For k > 0, the boundary
conditions are:

W,f,0) = UK?,?, -1) = 0. (5.7)
After integration we have:

W, £2, t) = (~J + Nk.&, e, t) ■ (5.8)
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A like equation is obtained for U\ . Thus:

UK?, t, Z3) = (y2 + OU?, e, f) • (5.9)

The mass-continuity equation, Eq. (3.12), gives the following recursion equation
involving the U'k .

I 1 hUl£,e, di? hUltf, e, t) = (5.10)

Substitution of the U\ and U\ from Eqs. (5.8) and (5.9) gives:

3 (hVdPk(0) 3 (h\3dPk(0) x 2
e1 \hj ~w~ + W2 W ~W~ ~ Rk-l(l ,n- (5-n)

_d_
df1

Here we have a partial differential equation for Pk(0) as a function of £l and £2. It is the
"diffusion equation" with a variable "diffusion coefficient" (h/h0)3 and a source term,
Rk-i . For k > 0 the boundary condition to be imposed at the edge of the fluid film is
P*(0) = 0.

In principle, Eq. (5.11) can be solved. Then Pk (£l, £2, tf) can be found from Eq.
(5.4) and U\ (J1, £2, £3) and U'{ (ij\ tf, £3) from Eqs. (5.8) and (5.9). All information for re-
peating the same process for U\+1, U2k+1 and Pk+l is now available. Provided that the series
(1.7) converge, solutions are developed for the complete Navier-Stokes equations subject
to the boundary conditions

< = ul = ~; e = 0
T = Po = /(<),

where the edge of the fluid film is described by the parametric equations

i1 = ftt); a2 = m.
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Appendix. Calculation of covariant components of metric tensor. The transformation
inverse to Eqs. (1.1) is:

y1 = r sin <p = (R — £K) sin <p = (R — £3/i) sin , (A.l)

y2 = Lf, (A. 2)

y* = R — r cos <P = R — (R — fh) cos • (A .3)
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From Eqs. (A.1-A.3):

1? = i ^ ~~ ̂  C0S v ~ ^ % sin <p' ^A'4^

dy1 „3 dh . .
~dg~ ^2sln^> (A-5)

= -/isin<p, (A .6)

% - °' ¥ - ¥ - °- (A-7)

= |j (# - ?3^) sin <p + £3 cos p, (A.8)

d?/3 3 dh ,.-^2 = { T75 cos (A.9)<9? df

^3 = ft cos ¥5. (A.10)
ot,

From the foregoing derivatives the covariant components <7„s can be calculated
according to Eq. (2.1). For example:

1 = {§ ~~ cos2 ̂ J?) sin2 ̂  ~ 21 ^ ~ ^ sin ^ cos V

+ (fi ~ ^)j sin2 ip + ^£3 cos2 <p + 2 ^ (R — £3/i)£3 sin <p cos <p

(A.11)

or:

firn = {| (ft - ^)| + (V ^)2- (A.12)

Next:

?22 = ^5^ sin2 p + L" + ^£3 —^ cos2 (p — L2 + ^£3 ^2^ • (A.13)

The other gaB can be found by similar summations. All are combined in the matrix
appearing as Eq. (2.2). The third-order determinant of this matrix is readily found to be

= (l -f^LV. (A.14)

Calculation of contravariant components of metric tensor. Equation (2.4) is used
to calculate the contravariant components, gaf>. For example, g33 is found as follows:

= (-1 )3+3L4 ~_(i-e§Lv]" (f)'idh
d£2

(f V dh._ dh
\l) d? " ' \L d£

  1 + £J*Y
+ \L df)

(A.15)
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or:

1 (y3 dlnhY 1 ( 3 dlnhY . .
/ jjw iri + j? l£ w) ■ (A16)33 _ _1 .

h2 t9L hY Vs a*1 / ' V V
Li

Likewise, we find that:

h
["/ A* n-i

= (—1)2+3L

i _ -Y _i_ (t A!Y sh dh
^ r) + \L d?) \Lj d? d£2

3 h_dh^ 3 h dh
? l$ as1 ? l2 a?2

or:

23 £3 dlnh
9 ~ L2 d? '

The matrix in Eq. (2.5) gives the remaining components.

(A.17)

(A.18)


