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PLATE DESIGN FOR MINIMUM WEIGHT*

By

R. T. SHIELD
Brown University

Summary. A discussion of the equations determining the minimum weight design
of transversely loaded sandwich plates is given. By means of an inverse method, the
solution for an elliptical plate clamped around its edge is derived.

1. Introduction. Apart from a paper by Prager [1]f, previous work [2-5] on the
minimum weight or minimum volume design of plates has been confined to circular
plates. In the present work, no assumption of circular symmetry is made. The basic
equations are formulated and the four different types of solution are discussed. An
inverse method is developed to obtain the minimum volume design for plates with
built-in edge conditions. The method is used to obtain the design for an elliptical plate.

2. Basic equations. It is required to design a plate of given shape and with prescribed
conditions of simple or built-in support along its edge. The design is to be such that
the plate supports by bending stresses a given distribution of pressure and in addition
the consumption of material is to be kept to a minimum. Here it is assumed that the
plate is a sandwich plate consisting of a core of a given constant thickness H and identical
face sheets of (variable) thickness h, where A << H. The core carries shear force only
and a bending moment across a section of the plate is supplied by direct stresses in the
face sheets. The material of the face sheets is assumed to be elastic-perfectly plastic
and to obey the Tresca yield condition of constant maximum shearing stress during
plastic flow. The principal bending moments M, , M, at a point of the plate are then
restricted to lie within or on the hexagon of Fig. 1 [6]. The maximum bending moment
M, is equal to ooHR, where o, is the yield stress of the face sheet material. Plastic flow
can occur only for states of stress represented by a point on the yield hexagon, and
during plastic flow the normality condition applies. This states that the vector with
components proportional to the principal plastic curvature rates «, , k, is normal to
the side of the hexagon for stress points on a side, and lies in the fan bounded by normals
to the adjacent sides for stress states represented by a corner of the hexagon.

Because of the normality condition, the rate D of dissipation of energy due to plastic
action per unit area of the middle surface of the plate, given by

D = Mk, + Mk, , (1)

is uniquely determined by the curvature rates «, , «, . It has been shown [3, 7, 8] that
minimum volume of the face sheet material will be involved if the plate is designed to
be just at the point of collapse under the given loads in a deformation mode such that

D/h = constant 2
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Fic. 1. Yield condition.

over the plate if the weight of the plate is neglected. The result is not restricted to plates
in bending but also applies to shells [9] and weight can be taken into account. The term
collapse is used here, as in limit analysis [10], to denote conditions under which plastic
flow can occur under constant loads, changes in geometry being neglected. It should
be noted that the dissipation rate D is directly proportional to the face sheet thickness
h so that condition (2) does not involve A, and is a condition on the plastic curvature
rates «, , k, only. However the form of condition (2) does depend upon the position of
the stress point on the yield hexagon.

During collapse, the elastic strains are constant [10] so that the plastic curvature
rates are determined directly from the transverse deflection rate w of the middle surface
of the plate by the equations

o= dwy 1ow

as; p1 08, (3)
Ko = 62_3;0 ']_ Qlﬁ .

983 p2 98,

In these equations, s, and s; denote distance along the (orthogonal) lines of principal
curvature rate which coincide with the lines of principal bending moment. The quantities
p: and p, denote, with due regard to sign, the radii of curvature of the lines of principal
bending moment, Fig. 2, and we have

- d - 9
L R @

where ¢ is the angle between the first principal moment direction and the z-axis. The
radii p, , p, satisfy

_3_(1_) i(l_) 1.1
9s; \p, + 98; \p, + P? + P: 0 (5)
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and also
¢ 18 _ & 10 ©
381 682 P 88] 682 681 P2 682

Because the s, , s, directions are principal directions the curvature rate «,, is zero, so
that

Fo _1ow  dw _ 1w o
631 632 P1 631 ’ 682 631 P2 632
Equations (3)-(7) can be used to show that
o _ 1 _
3s, = o (Kz Kl); (8)
O _ 1
681 = 2 (Kl Kz)- (9)

As these equations are obtained by eliminating w between Eq. (3), they are the com-
patibility conditions on «, , «, .

The bending moments M, , M, and shear forces @, , Q, per unit length acting on an
element of the plate with faces normal to the principal directions are shown in Fig. 3.

Fi6. 3. Positive senses of shear forces and moments.
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For definiteness we assume that the plate is horizontal and that the pressure p acts on
the upper surface of the plate. Positive values of M, , M, stress the lower face of the
plate in tension and the shear forces are positive in the senses shown in the figure. To
correspond, the deflection rate w is positive in the upwards direction. For equilibrium

99, an

3s, + + Q: + Q2 =D, (10)
and
Dhrlon-m)+ae-o,
' (11)
oM,

1 .
682 +p1 (Mz —Ml) +Q2 =

Referred to the rectangular cartesian coordinates (z, y), the equations corresponding
to Egs. (3), (10), (11) are

9w *w 9w
T YT e T aray (12)
9Q. |, 9Q, _ ‘
ox + ay - P; (13)
oM, . oM,,
o ooy TE=0
(14)
6 Ill Il
+ + Q, = 0.
Equations (13) and (14) can be combined to give
2M M., 'M
+27; 3 + W = P (15)

3. The four types of solution. The condition (2) for minimum volume imposes a
restriction on the deformation w. The form of the restriction depends upon the position
of the stress point on the yield hexagon of Fig. 1. There are only four essentially different
types of plastic flow which can occur. For example plastic flow with moments represented
by corner A of Fig. 1 differs in character from plastic states at D by only a change in sign,
and stress points on BC become stress points on EF if the suffices 1, 2 are interchanged.
As typical of the four types of plastic flow, we shall consider in turn moment states
represented by corners A and C and points on the sides AB and BC, not including the
end points. For convenience in the algebra, the constant in condition (2) will be taken
throughout to be ko,H, where k is a positive constant. It will be seen that regimes AB
and BC lead to restricted forms for the deflection rate and it is unlikely that these
regimes will play a large part in the solution of particular problems.

Regime A. For the corner A, M, = M, = M, = o¢,Hh and the curvature rates «;
and «, are positive. The condition (2) then requires kK + k; = k, or

6 w

o + = k. (16)
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Equilibrium requires

6;1;;429 + 3;];/422 = —p. (17)
Regime C. For the corner C, M, is zero and M, = — M, . The curvature rates must
satisfy the inequalities

02 k20, | as)

and the constancy of D/h requires
K = —k. (19)
From Eqgs. (8) and (19) it follows that |
i‘“ +k =0. (20)

As «, is positive and k is by definition a positive constant, this equation requires p, =
and the lines of principal moment in the s,-direction are straight. Thus the orthogonal
net of principal moment trajectories consists of families of straight lines and parallel
curves.

It is convenient at this point to introduce new coordinates, Fig. 4. One of the curved

F1c. 4. Coordinate system for regime C.

principal moment lines is chosen as a base curve and distance from this curve along
the straight lines is denoted by «. The inclination ¢ and the distance « are used as co-
ordinates, and we have

ds, = da, ds, = p, dp, p: = p + «, (21)

where p = p(p) is the radius of curvature of the base curve a« = 0. Equation (19) is
simply
2
LAC AN 22)

o’
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and therefore

—1ka® + of(p) + g(o). (23)

The functions f and g are not completely arbitrary but must be chosen to satisfy Eqs.
(7). The final result is

w =~k + of0) + [ HoN(o) do, (24)

where the prime denotes differentiation with respect to ¢. In addition, inequalities (18)
must be satisfied.

It is easily shown that the equilibrium equations and the yield conditions M, = —M,,
M, = 0 give
_ M, M, -
Ql - da + P2 ’ Q? - Oy (25)
1
=)+ 22+ [ opda— - [ spaa (26)
2

where C and D are functions of ¢ only.
In the particular case when both families of principal moment lines are straight, it
is convenient to take the x, y-axes in the s, , s,-directions. We then have

% = -k af‘;;, =0 @7)
so that
w = —}ka* + ax + g(y). (28)
Here a is a constant and g(y) must be such that
k>g"(y) 20 (29)

in order to satisfy inequalities (18).

Regime AB. For moment states represented by points on the side AB of Fig. 1,
M, = M, and M, > M, > 0. The curvature rate «, is zero and condition (2) then
requires x, = k. As both «, and «, are constant, Egs. (8) and (9) require p, = p, = o
and both families of principal moment lines are straight. If the z, y-axes are taken in
the s, , s,-directions, we have

Fw _ dw 9w
ox°  odwoy 0, ay° k, (30)
and therefore
w = 3ky’ + ar + by + ¢, (31)

where @, b, ¢ are constants.
The moment M., is zero, M, = M, and M, > M, > 0, and the equilibrium equation
(15) requires

——5‘ = . (32)
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Regime BC. In this case x;, = — k, = — k and again both families of principal moment
lines are straight. With the x, y-axes parallel to the s, , s,-directions, the deflection rate
is given by

w= —3ik(z® — y) +ar + by +c. (33)
The moments satisfy
M, =0, M,—M,=M,, My,>M,>0, (34)
and for equilibrium

a?M, M,
922 + ayz = —Pp. (35)

4. Simply supported plate. When the plate is simply supported at its edge, the
deflection rate w and the normal bending moment M, must be zero at the boundary
of the plate. For a circular plate, the minimum volume design is obtained by the use of
regime A only. This is also true for a certain class of shapes. If the plate shape is such
that the deflection rate w determined from Eq. (16) and the condition w = 0 at the edge
gives non-negative curvature rates «, and «, , then the deflection rate satisfying D/h =
constant has been found. The thickness distribution for any given distribution of pressure
is obtained by solving Eq. (17) for M, subject to M, = 0 at the edge.

For example, for the plate bounded by the ellipse

2 2
S+h=1, (36)
the solution of (16) satisfying w = 0 at the edge is
w = 2(a2 + b2) a2 + 2 1 ] (37)

and «, , k, are non-negative. For constant pressure over the plate the thickness distri-
bution is given by

212 2 2
ooHh = M, = .‘Z_(f#—f?i <1 -2 —y—) 38)

The case of the simply supported plate has been discussed previously by Prager [1].

5. Built-in plate. For the plate with a built-in or clamped edge, the deflection rate
w and its normal derivative 0w/dn must be zero at the edge. The edge is therefore a line
of (zero) principal curvature rate. The solution for the circular plate involves regime A
in a central circular region and regime C in the remaining annular region [5]. Here an
inverse method is developed for obtaining solutions similar in character to that for the
circular plate.

It is assumed that in an inner region, which is bounded by the curve v, regime A
applies, and in the region between v and the edge I' of the plate, regime C applies, see
Fig. 5. The curve v is as yet undetermined. The lines of principal moment in the region
between y and T are straight lines normal to I" and curves parallel to T, since the boundary
is a line of principal moment. The trajectories are indicated by the dotted lines in Fig.
5. The coordinate system of Fig. 4 will be used, with the base curve @« = 0 taken to be
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Fie. 5. Plate with built-in edge.

the edge T' of the plane. The direction of « increasing is taken in the direction of the
outward normal to T, so that « is negative in the region between v and T.

The deflection rate w¢ in the annular region has the form (23) and in order to have
w = 0 and dw/da = 0 on I' (where & = 0) we must have

We = _%ka2. (39)

The curve v and the deflection rate w, inside v are to be determined from Eq. (16)
which holds inside v and the continuity of w and dw/dn across y. Assuming that the
solution exists (with non-negative «, and «, inside v), the determination of ¥ may prove
to be difficult, and for this reason an inverse method of solution is developed here.

From Eq. (39), we have

We _ 4 _(_ }

o ka = (—2kws)*. (40)
Also since w¢ depends on « only, dw¢/da is equal to the magnitude of the gradient of
we . It follows that the deflection rate (39) is such that

uc)  (oue) _
2kwe + ( w) T (%) =0 (41)
This equation holds in the region between v and T and in particular Eq. (41) holds on
the curve v. Thus the deflection rate w, satisfying Eq. (16) inside v must satisfy (41)
on vy because of the continuity of w and its first derivatives across v, that is
2kw, + <6x + oy = 0 on +«. (42)
The inverse method is therefore to choose a function w, which satisfies Eq. (16).
The curve v is then determined as the locus of points satisfying Eqs. (42). In order to
determine the curve I' which defines the boundary of the plate, we again use the con-
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tinuity of w and its first derivatives. From (39), the (variable) value of « on v is de-
termined by ‘

2 1/2
- = (%) @

where the suffix ¥ means that the value on v is to be taken. Also in the region between
v and T, the inclination ¢ of the straight principal moment trajectories is given by

_ dwe/dy

tane = & oz’

(44)
since these lines are normal to the curves w = constant. Thus the value of ¢ on v can be
determined from the values of dw,/dx and dw,/dy on v,

dw, /6y)
Y

tan #r = (610,4/6&:

(45)

Knowing the values of « and ¢ on v, the curve I' can be found. The coordinates of a
point on v will be denoted by (£, #) and the point on T obtained by dropping a perpen-
dicular from (¢, 5) to T will be denoted by (X, Y). The points (£, ) and (X, ¥) then are
distant — a, apart and the line joining them is a principal moment line. It follows that

X =¢— a, cos o, ,} (46)
Y=9n9—a,sineg, .
With Eqgs. (42), (43) and (45), Egs. (46) can be written as
> _ l 6w4)
X=t+ k ( ax/,’
1 G_wA)
n+ k ( dy /"’
and these equations are the parametric equations of the curve I', remembering that
the point (£, ) lies on 7.

It should be remembered that «, and «, must be non-negative inside ¥ and the in-
equalities (18) must be satisfied in the annular region. With w given by Eq. (39),

(47)
Y

K = —k, K2 = —k_a ’ (48)
P2
and since a is negative the inequalities (18) will be satisfied provided that between

v and T,

-2 <. (49)
P2

It is only necessary to check this inequality on v as the left hand side attains its maximum
on y. Remembering the definition of p, [Eq. (21)], inequality (49) can be interpreted as
requiring that the radius of curvature of T at (X, Y) be not less than twice the distance

— a, between the points (£, n) on vy, (X, Y) on T.
The thickness distribution, or equivalently the values of M, , throughout the plate
can be determined for any given distribution of pressure when the curves ¥ and T are
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known. At the junction v of the regimes A and C, equilibrium requires the bending
moments M, , M,, to be continuous and the shear force @, must be continuous. In order
to make the bending moments continuous, M, must be zero on y. This condition and
Eq. (17) then determine M, in the region bounded by v. The value of the shear force
Q. on v can then be found. The values of M, in the annular region are then given by
Eq. (26) where the functions C(¢) and D(p) are determined by the condition M, = 0
on v and the known value of the shear force on v.

We remark that if the pressure distribution p(z, y) is non-zero at points inside ¥,
then the thickness h is non-zero everywhere in the plate except for points on the curve
v. However, if p is identically zero inside v, then A is zero in this region, as h satisfies
Laplace’s equation inside v and is zero on v. In effect, the load produced by pressure at a
point in the annular region is carried by a ‘“cantilever beam’ from the point to the
nearest point of the edge of the plate. Loads in the inner region are carried by the whole
boundary of the plate. This property of the minimum volume design for a built-in plate
has been discussed previously for the case of the circular plate [5].

6. Elliptical plate with built-in edge support. If it is assumed that inside vy the
deflection rate w is given by

kr22 2 2
wA=_%(r2__‘_q_q_25{1_gE_y_2}, (50)

where r and ¢ are constants, the solution for the elliptical plate is obtained The de-
formation rate (50) satisfies Eq. (16) and «, , x, are positive. The curve v is determined
by substituting (50) into Eq. (42) and the result is the ellipse

)
[X]

+ 5 =1, (51)

o8
SUS,

v:

where the semi-axes a and b are given by
B Gl W Gl
r 4+ 2¢° 2r + ¢
The values of « and ¢ on v can be obtained from (50) and (43), (45). The substitution of

(50) into Eqs. (47) gives the coordinates (X, Y) of a point on TI' in terms of the coordi-
nates (£, 1) of the point of intersection of the curve ¥ with the normal to I' at (X, Y),

x = € +20) _ @+ g),
"+ q) "’ "+ )

: (52)

(53)

As the coordinates (£, n) satisfy (51), the equation for the boundary T of the plate can
be written

X? Y? .
I': ?+?= 1, (54)

where

_ 7'2(7'2 + 2q2)

2
A g

(55)
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Equations (55) can be solved for #* and ¢° to give
3r* = 24% — B + (A4 — A’R? + B4)1/2’
3¢° = 2B® — A* + (A* — A’B®* + BY)'"”.
The deflection rate w¢ at the point (z, y) in the annular region is given by
we = —4ha’ = —$[(X — 9* + (¥ — y)*], (57)

where the normal to T at (X, Y) passes through (z, y), Fig. 5. Because the line joining
(z,y) to (X, Y) is normal to T,

(56)

Y —y_YA®
X -2 XB
For given (z, y), X and Y can be determined from Egs. (54) and (58) and substitution
in (57) then yields the value of w¢ at (z, y). It can be shown that inequality (49) is

satisfied in the annular region, verifying that regime C applies in the annular region.
In Fig. 6 the values of a/A4 and b/A are plotted against B/A for therange 0 < B/A < 1.

9 \\
o. L\/

A

os \
N

(58)

1.0

o
ol 2 dle
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(o} 0.2 0.4 0.6 0.8 1.0
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F1c. 6. Semi-axes a and b of curve v for elliptical plate with semi-axes A and B.

When the plate is circular (4 = B), the curve v is a circle of radius two-thirds of the
radius of the plate, as found previously [5]. For a plate which is long compared to its
width (B/A — 0), the ratio a/A tends to unity and b/B tends to one-half. This can be
compared with the minimum volume design for a sandwich beam, built-in at the ends,
for which the sections of zero thickness, which correspond to the curve v, are distant
one-fourth the length of the beam from each end.

Thickness distributions for specific pressure distributions may now be obtained as
described in the previous section, and for illustration we consider the case of constant
pressure p. The notation My, and M,¢ will be used to denote the value of M, = a,Hh
in the inner and annular regions respectively. As M, is zero on y and M, satisfies Eq.
(17) inside v it follows that the value of M, at points inside v is given by

2 2
o= s (-5 - ) 2
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In the annular region, M, is given by Eq. (26) and as p is constant and M, = 0 on v
it follows that

1 1 1
My = gp(pg — 05 + D(‘P)(E - E) ) (60)

where p;(p) is the value of p, on v. The value of D(p) is to be determined by the condition
that the shear force @, be continuous across v. It is convenient in the calculations to
introduce an auxiliary variable 6 defined by

X = A cos 6, Y = Bsin 6. (61)
Substitution of these values into Eqgs. (53) shows that the coordinates (£, 5) are given by
£ =acosb, n = bsin 6. (62)

The inclination ¢ of the normal at (X, Y) to I' and the inclination 6, of the normal at
(¢, 1) to v are given by

tan o = gtan 6, tan 6, = %tan 9. (63)
The radius of curvature p(p) of the curve T is
p = A’B’/(A? cos’ ¢ + B’sin® ¢)*”. (64)
The value of p; is p + @, and here
ay = —A(A — a)/(A” cos” ¢ + B®sin’ )", (65)
In the inner region, M, = M, = M,, and M,, is zero on y so that
_ M
0.25
0.2 /
major
o, Hh
pB°
0.1 N
minor
)
o 0.5 1.0 1.5
x/B and y/B

Fi16. 7. Variation of thickness across major and minor semi-axes for ellipse under constant pressure
(A = 1.5B).
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In the annular region, @, = 0 and @, is given by Eq. (25). The value of @, is therefore

oM
Q. = Qi cos (0, — o) = E‘)—q cos (6, — o), (67)
evaluated on v. Equating the two values (66) and (67) of @, leads after some reduction to

N D(p) ab (A’H® cos’ ¢ + B’a’sin’® o)'* ) 68)
W = T S P P (AT eo p + Bosin® o) (Ab cos’ ¢ + Basi’e) ¢
This equation determines the function D(p) and substitution in Eq. (60) gives the value
of M, in terms of the coordinates (e, ¢).

Figure 7 shows the variation of the thickness h along the major and minor axes of the
ellipse for the particular case A = 1.5B.

The volume of the face sheets in the minimum volume design can be obtained without
determining the design explicitly. The plate is at collapse under a mode w such that the
rate of dissipation D per unit area of the plate has the value D = ko,Hk. During collapse
in the mode w, the pressure p is the only external force which does work and it follows
that

- f pwdd = f D dA = YooHV, (69)

where the integrals are taken over the area of the plate and where V is the volume of
the face sheets. For a circular plate of radius B under constant pressure, the volume
of the face sheets is given by [4]

4
V = 0.117 “Z’f] (70)

Equation (69) was used to compare the average thicknesses of the face sheets of an
elliptical plate of semi-axes A and B and a circular plate of radius B, both plates

. \
N

o 0.2 04 0.6 0.8 1.0
B/A

Fic. 8. Ratio of average thicknesses of constant pressure designs for elliptical plate with semi-axes A
and B and circular plate of radius B.
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being subjected to the same constant pressure p. The ratio R of the average thicknesses
is shown in Fig. 8 for the range 0 < B/A < 1. The volume of the face sheets for the
elliptical plate is given by

- PR b
V=017 Zp AR (71)

REFERENCES

1. W. Prager, Minimum weight design of plates, De Ing. 48, 1-2 (1955)

2. H. G. Hopkins and W. Prager, Limits of economy of material in plates, J. Appl. Mech. 22, 372-374
(1955)

3. W. Freiberger and B. Tekinalp, Minimum weight design of circular plates, J. Mech. Phys. Solids
4, 294-299 (1956)

4. E. T. Onat, W. Schumann and R. T. Shield, Design of plates for minimum weight, J. Appl. Math.
Phys. (ZAMP) 8, 485-499 (1957) .

5. W. Prager and R. T. Shield, Minimum weight design of circular plates under arbitrary loading, Brown
University Technical Report DA-4564/4 (1958). J. Appl. Math. Phys. (ZAMP) 10, 421-426 (1959)

6. H. G. Hopkins and W. Prager, The load-carrying capacities of circular plates, J. Mech. Phys. Solids
2, 1-13 (1953)

7. D. C. Drucker and R. T. Shield, Design for minimum weight, Proc. 9th Intern. Congr. Appl. Mech.,
Brussels 1956

8. D. C. Drucker and R. T. Shield, Bounds on minimum weight design, Quart. Appl Math. 15, 269-
281 (1957)

9. R. T. Shield, On the optimum design of shells, Brown University Technical Report DA-4564/3
(1958). To appear in J. Appl. Mech.

10. D. C. Drucker, W. Prager and H. J. Greenberg, Extended limit design theorems for continuous media,

Quart. Appl. Math. 9, 381-389 (1952)



